
Maxima Workbook

Roland Salz

June 10, 2018
Vers. 0.2.14



This work is published under the terms of the
Creative Commons (CC) BY-NC-ND 4.0 license.

You are free to: Share — copy and redistribute the material in any medium or
format

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and
indicate if changes were made. You may do so in any reasonable manner, but not

in any way that suggests the licensor endorses you or your use.

NonCommercial — You may not use the material for commercial purposes.

NoDerivatives — If you remix, transform, or build upon the material, you may not
distribute the modified material.

No additional restrictions — You may not apply legal terms or technological
measures that legally restrict others from doing anything the license permits.

Copyright © Roland Salz 2018

No warranty whatsoever is given for the correctness or completeness of the
information provided.

Maple, Mathematica and Windows are registered trademarks.

This project is work in progress. It is in the beginning phase.
Comments and suggestions for improvement are welcome.

Roland Salz
Braunsberger Str. 26
D-44809 Bochum
mail@roland-salz.de

i

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode


Preface

Maxima was developed from 1968-1982 at MIT (Massachusetts Institute of Technol-
ogy) as the first comprehensive Computer Algebra System. It was improved ever
since. Today it is free (GPL) software and has about 150.000 users worldwide. It is
employed in education and research by mathematicians, physicists, chemists, en-
gineers, and economists. Today the software is maintained by an energetic group of
volunteers called the Maxima team. The author wishes to thank its kind and helpful
members!

The intention of the Maxima Workbook is to provide a new documentation of the
computer algebra system Maxima. It is aimed at both users and developers. As a
users’ manual it contains a description of the Maxima language, here abbreviated
MaximaL. User functions written by the author are added wherever he felt that Max-
ima’s standard functionality is lacking them. As a developers’ manual it describes a
possible Lisp development environment. Maxima is written in Common Lisp. So the
interrelation between MaximaL and Lisp is highlighted. We are convinced that there
is no clear distinction between a Maxima user and a developer. Any sophisticated
user tends to become a developer, too, and he can do so either on his own or by
joining the Maxima team.

ii



Contents

Preface ii

I Historical Evolution, Documentation 1

1 Historical evolution 2
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 MAC, MACLisp and MACSyMa: The project at MIT . . . . . . . . . . . . . . 2

1.2.1 Initialization and basic design concepts . . . . . . . . . . . . . . . . 2
1.2.2 Major contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 The users’ community . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Users’ conferences and first competition . . . . . . . . . . . . . . . . . . . 4
1.3.1 The beginning of Mathematica . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Announcement of Maple . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Commercial licensing of Macsyma . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.1 End of the development at MIT . . . . . . . . . . . . . . . . . . . . . . 5
1.4.2 Symbolics, Inc. and Macsyma, Inc. . . . . . . . . . . . . . . . . . . . 5

1.5 Academic and US government licensing . . . . . . . . . . . . . . . . . . . . 5
1.5.1 Berkeley Macsyma and DOE Macsyma . . . . . . . . . . . . . . . . . 5
1.5.2 William Schelter at the University of Texas . . . . . . . . . . . . . . 6

1.6 GNU public licensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6.1 Maxima, the open source project since 2001 . . . . . . . . . . . . . 7

1.7 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Documentation 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Official documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1.1 English current version . . . . . . . . . . . . . . . . . . . . . 10
2.2.1.2 German version from 2011 . . . . . . . . . . . . . . . . . . . 10

2.3 External documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1.1 Paulo Ney de Souza: The Maxima Book, 2004 . . . . . . . 10
2.3.2 Tutorials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2.1 Zachary Hannan: wxMaxima for Calculus I + II, 2015 . . 10
2.3.2.2 Wilhelm Haager: Computeralgebra mit Maxima: Grund-

lagen der Anwendung und Programmierung, 2014 . . . 11
2.3.2.3 Wilhelm Haager: Grafiken mit Maxima, 2011 . . . . . . . 11
2.3.2.4 Roland Stewen: Maxima in Beispielen, 2013 . . . . . . . . 11

iii



2.3.3 Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3.1 Edwin L. (Ted) Woollett: "Maxima by Example", 2018,

and "Computational Physics with Maxima or R" . . . . . . 11
2.3.3.2 Timberlake and Mixon: Classical Mechanics with Max-

ima, 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.4 Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.4.1 Andreas Baumgart: Toolbox Technische Mechanik, 2018 12
2.3.4.2 Wilhelm Haager: Control Engineering with Maxima, 2017 12
2.3.4.3 Tom Fredman: Computer Mathematics for the Engi-

neer, 2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.4.4 Gilberto Urroz: Maxima: Science and Engineering Ap-

plications, 2012 . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.5 Economics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.5.1 Hammock and Mixon: Microeconomic Theory and Com-
putation, 2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.5.2 Leydold and Petry: Introduction to Maxima for Eco-
nomics, 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Articles and Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Publications by Richard Fateman . . . . . . . . . . . . . . . . . . . . 13

2.5 Comparison with other CAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.1 Tom Fredman: Computer Mathematics for the Engineer, 2014 . 13

2.6 Internal and program documentation . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Mailing list archives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

II Basic Operation 14

3 Basics 15
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 REPL: The read-evaluate-print loop . . . . . . . . . . . . . . . . . . . 15
3.1.2 Command line oriented vs. graphical user interfaces . . . . . . . 16

3.2 Input and output: using the Maxima REPL at the interactive prompt . . 17
3.2.1 Input and output tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Statement termination operators . . . . . . . . . . . . . . . . . . . . 17
3.2.3 Format for input and output . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.3.1 One- and two-dimensional form . . . . . . . . . . . . . . . . 18
3.2.3.2 Entering and display of special characters . . . . . . . . . 18
3.2.3.3 Display of multiplication operator . . . . . . . . . . . . . . . 18

3.2.4 Backward references . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.4.1 System variables for output . . . . . . . . . . . . . . . . . . 19
3.2.4.2 System variables for input . . . . . . . . . . . . . . . . . . . 19

3.3 Basic notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.1 Syntax description operators . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 Compound and separation operators . . . . . . . . . . . . . . . . . . 21
3.3.3 Identity and relational operators . . . . . . . . . . . . . . . . . . . . . 22
3.3.4 Assignment operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.5 Substitution of symbol by value in an expression . . . . . . . . . . 27

iv



3.3.6 Function and macro definition operators . . . . . . . . . . . . . . . . 27
3.3.6.1 Function definition operator . . . . . . . . . . . . . . . . . . 27
3.3.6.2 Macro function definition operator . . . . . . . . . . . . . . 27

3.3.7 Miscellaneous operators . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Naming of identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.1 Naming specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.1.1 Case sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.1.2 ASCII standard . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.1.3 Unicode support . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1.3.1 Implementation notes . . . . . . . . . . . . . . . . . 29
3.4.2 Basic naming conventions . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.2.1 System functions and variables . . . . . . . . . . . . . . . . 30
3.4.2.2 System constants . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Input and output 31
4.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 General option variables . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 General option variables . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.2 Variables generated by Maxima . . . . . . . . . . . . . . . . . . . . . 31

5 Plotting 32

6 Batch Processing 33

III Concepts of Symbolic Computation 34

7 Data types and structures 35
7.1 Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.1.1.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.1.1.2 Predicate functions . . . . . . . . . . . . . . . . . . . . . . . . 35

7.1.2 Integer and rational numbers . . . . . . . . . . . . . . . . . . . . . . . 36
7.1.2.1 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.1.2.1.1 External . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.1.2.1.2 Internal . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.1.2.1.2.1 Canonical rational expression (CRE) . . . . 36
7.1.2.2 Predicate functions . . . . . . . . . . . . . . . . . . . . . . . . 36
7.1.2.3 Type conversion . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.1.2.3.1 Automatic . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.1.2.3.2 Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.1.3 Floating point numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.1.3.1 Ordinary floating point numbers . . . . . . . . . . . . . . . 38
7.1.3.2 Big floating point numbers . . . . . . . . . . . . . . . . . . . 39

7.1.4 Complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.1.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.1.4.1.1 Imaginary unit . . . . . . . . . . . . . . . . . . . . . . 39

v



7.1.4.1.2 Internal representation . . . . . . . . . . . . . . . . 39
7.1.4.1.3 Canonical order . . . . . . . . . . . . . . . . . . . . . 40
7.1.4.1.4 Standard form and polar form . . . . . . . . . . . . 40
7.1.4.1.5 Simplification . . . . . . . . . . . . . . . . . . . . . . . 40
7.1.4.1.6 Properties . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.1.4.1.7 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.1.4.1.8 Generic complex data type . . . . . . . . . . . . . . 41

7.1.4.2 Standard form . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.1.4.3 Polar form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.1.4.4 Complex conjugate . . . . . . . . . . . . . . . . . . . . . . . . 42

7.1.4.4.1 Internal representation . . . . . . . . . . . . . . . . 42
7.1.4.5 Predicate function . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.2 Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.3 String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.4 Sharing of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.5 List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.6 Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.7 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.8 Canonical rational expression (CRE) . . . . . . . . . . . . . . . . . . . . . . . 44

8 Expressions, operators 45
8.1 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9 Evaluation 46
9.1 Functions for evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

10 Simplification 47
10.1 Properties for simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.2 Functions for simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

11 Knowledge database system 48
11.1 Facts and contexts: The general system . . . . . . . . . . . . . . . . . . . . 48

11.1.1 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
11.1.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
11.1.1.2 Functions and system variables . . . . . . . . . . . . . . . . 50

11.1.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
11.1.2.1 Internal data structure . . . . . . . . . . . . . . . . . . . . . . 51
11.1.2.2 Notes on the program code . . . . . . . . . . . . . . . . . . . 51

11.2 Values, properties and assumptions . . . . . . . . . . . . . . . . . . . . . . . 51
11.3 MaximaL Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

11.3.1 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
11.3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
11.3.1.2 System-declared properties . . . . . . . . . . . . . . . . . . 52
11.3.1.3 User-declared properties . . . . . . . . . . . . . . . . . . . . 52

11.3.1.3.1 Properties of variables . . . . . . . . . . . . . . . . . 53
11.3.1.3.2 Properties of functions . . . . . . . . . . . . . . . . . 54

11.3.1.4 Functions and system variables for properties . . . . . . 56
11.3.1.5 User-defined properties . . . . . . . . . . . . . . . . . . . . . 56

vi



11.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
11.4 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

11.4.1 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
11.4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
11.4.1.2 Functions and system variables for assumptions . . . . . 58

11.4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

12 Rules and patterns 61

IV Basic Mathematical Computation 62

13 Root, exponential and logarithmic functions 63
13.1 Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

13.1.1 Vereinfachungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
13.2 Exponential function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

13.2.1 Vereinfachungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

14 Limits 65

15 Sums, products and series 66
15.1 Sums and products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

15.1.1 Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
15.1.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
15.1.1.2 Constructing, simplifying and evaluating sums . . . . . . 66
15.1.1.3 Differentiation and integration of sums . . . . . . . . . . . 67
15.1.1.4 Limits of sums . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

15.2 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
15.2.1 Power series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
15.2.2 Taylor and Laurent series expansion . . . . . . . . . . . . . . . . . . 69

15.2.2.1 Single-variable form . . . . . . . . . . . . . . . . . . . . . . . 69
15.2.2.2 Multi-variable form . . . . . . . . . . . . . . . . . . . . . . . . 70
15.2.2.3 Option ’asymp . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
15.2.2.4 Option variables . . . . . . . . . . . . . . . . . . . . . . . . . . 71

16 Differentiation 72

17 Integration 73

18 Solving Equations 74

19 Differential Equations 75

20 Polynomials 76

21 Linear Algebra 77
21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

21.1.1 Operations in total or element by element . . . . . . . . . . . . . . 77
21.1.2 Dot operator: non-commutative product . . . . . . . . . . . . . . . 77

21.1.2.1 Exponentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

vii



21.1.2.2 Option variables for the dot product . . . . . . . . . . . . . 78
21.2 Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

21.2.1 Representations and their internal data structure . . . . . . . . . . 78
21.2.2 Option variables for vectors . . . . . . . . . . . . . . . . . . . . . . . . 79
21.2.3 Construct, transform and transpose a vector . . . . . . . . . . . . . 79
21.2.4 Dimension of a vector . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
21.2.5 Indexing: refering to the elements of a vector . . . . . . . . . . . . 81
21.2.6 Arithmetic operations and other MaximaL functions applicable

to vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
21.2.7 Scalar product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
21.2.8 Tensor product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
21.2.9 Vector norm and normalization . . . . . . . . . . . . . . . . . . . . . . 83
21.2.10 Vector equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
21.2.11 Vector product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
21.2.12 Mixed product and double vector product . . . . . . . . . . . . . . . 84

21.3 Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
21.3.1 Internal data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

21.3.1.1 matrixp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
21.3.2 Indexing: Refering to the elements of a matrix . . . . . . . . . . . 85
21.3.3 Option variables for matrices . . . . . . . . . . . . . . . . . . . . . . . 85
21.3.4 Construct a matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

21.3.4.1 Enter a matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
21.3.4.2 Append colums, rows or whole matrices . . . . . . . . . . 86
21.3.4.3 Extract a submatrix, column or row . . . . . . . . . . . . . 87
21.3.4.4 Build special matrices . . . . . . . . . . . . . . . . . . . . . . 88

21.3.4.4.1 Identity matrix . . . . . . . . . . . . . . . . . . . . . . 88
21.3.4.4.2 Zero matrix . . . . . . . . . . . . . . . . . . . . . . . . 88
21.3.4.4.3 Diagonal matrix . . . . . . . . . . . . . . . . . . . . . 88

21.3.4.5 Genmatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
21.3.5 Functions applied element by element . . . . . . . . . . . . . . . . . 88

21.3.5.1 Arithmetic operations and other MaximaL functions ap-
plicable to matrices . . . . . . . . . . . . . . . . . . . . . . . . 88

21.3.5.2 Mapping arbitrary functions and operators . . . . . . . . . 89
21.3.6 Transposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
21.3.7 Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
21.3.8 Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

21.3.8.1 Non-commutative matrix product . . . . . . . . . . . . . . . 90
21.3.9 Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

21.4 Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
21.4.1 Option variables for determinant . . . . . . . . . . . . . . . . . . . . 90

22 Analytic geometry 91
22.1 Representation and transformation of angles . . . . . . . . . . . . . . . . . 91

22.1.1 Degrees � radiant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
22.1.2 Degrees decimal � min/sec . . . . . . . . . . . . . . . . . . . . . . . . 91
22.1.3 (−π, π)� (0,2π) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

viii



23 Coordinate systems 93
23.1 Cartesian coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
23.2 Polar coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
23.3 Cylindrical coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
23.4 Spherical coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
23.5 General coordinate transformations . . . . . . . . . . . . . . . . . . . . . . . 93

V Advanced Mathematical Computation 94

24 Tensors 95

25 Numerical Computation 96

VI Maxima Programming 97

26 Compound statements 98
26.1 Sequential and block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

26.1.1 Sequential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
26.1.2 Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

26.2 Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
26.2.1 Function definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
26.2.2 Ordinary function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
26.2.3 Array function, memoizing function . . . . . . . . . . . . . . . . . . .101
26.2.4 Subscripted function . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
26.2.5 Function call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102

26.3 Operator (function) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
26.4 Lambda function, anonymous function . . . . . . . . . . . . . . . . . . . . .104
26.5 Macro function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

27 Program Flow 106

VII User interfaces, Package libraries 107

28 User interfaces 108
28.1 Internal interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

28.1.1 Command line Maxima . . . . . . . . . . . . . . . . . . . . . . . . . . .108
28.1.2 wxMaxima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
28.1.3 iMaxima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
28.1.4 XMaxima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
28.1.5 TeXmacs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
28.1.6 GNUplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

28.2 External interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
28.2.1 Sage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
28.2.2 Python, Jupyter, Java, etc. . . . . . . . . . . . . . . . . . . . . . . . . .108

29 Package libraries 109

ix



29.1 Internal share packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
29.2 External user packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
29.3 The Maxima exernal package manager . . . . . . . . . . . . . . . . . . . . .109

VIII Maxima development 110

30 MaximaL development 111
30.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
30.2 Development with wxMaxima . . . . . . . . . . . . . . . . . . . . . . . . . . .112

30.2.1 File management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
30.3 Error handling and debugging facilities in MaximaL . . . . . . . . . . . . .112

30.3.1 Break commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
30.3.2 Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
30.3.3 Analyzing data structures . . . . . . . . . . . . . . . . . . . . . . . . .113

30.4 MaximaL compilaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
30.5 Providing and loading MaximaL packages . . . . . . . . . . . . . . . . . . .113

31 Lisp Development 114
31.1 MaximaL and Lisp interaction . . . . . . . . . . . . . . . . . . . . . . . . . . .114

31.1.1 Maxima and Lisp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
31.1.2 MaximaL and Lisp identifiers . . . . . . . . . . . . . . . . . . . . . . .114
31.1.3 Lisp modes under MaximaL . . . . . . . . . . . . . . . . . . . . . . . .115

31.1.3.1 Pure :lisp mode . . . . . . . . . . . . . . . . . . . . . . . . . .115
31.1.3.2 Maxima-like Lisp mode . . . . . . . . . . . . . . . . . . . . .115

31.1.4 Executing Lisp code from within MaximaL . . . . . . . . . . . . . . .115
31.1.4.1 Break command ":lisp" . . . . . . . . . . . . . . . . . . . . .115

31.1.5 Calling MaximaL function from within Lisp . . . . . . . . . . . . . .116
31.2 Using the Emacs IDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
31.3 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116

31.3.1 Breaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
31.3.2 Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
31.3.3 Analyzing data structures . . . . . . . . . . . . . . . . . . . . . . . . .116

31.4 Lisp compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
31.5 Providing and loading Lisp code . . . . . . . . . . . . . . . . . . . . . . . . .116

31.5.1 Loading Lisp code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
31.5.1.1 Loading whole Lisp packages . . . . . . . . . . . . . . . . .116
31.5.1.2 Modifying and loading individual system functions or

files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
31.5.2 Committing Lisp code and rebuilding Maxima . . . . . . . . . . . .117

IX Developer’s environment 118

32 Emacs-based Maxima Lisp IDE 119
32.1 Operating systems and shells . . . . . . . . . . . . . . . . . . . . . . . . . . .119
32.2 Maxima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119

32.2.1 Installer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119

x



32.2.2 Building Maxima from tarball or repository . . . . . . . . . . . . . .120
32.3 External program editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

32.3.1 Notepad++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120
32.4 7zip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120
32.5 SBCL: Steel Bank Common Lisp . . . . . . . . . . . . . . . . . . . . . . . . . .121

32.5.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
32.5.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121

32.5.2.1 Set start directory . . . . . . . . . . . . . . . . . . . . . . . . .121
32.5.2.2 Init file ".sbclrc" . . . . . . . . . . . . . . . . . . . . . . . . . .122
32.5.2.3 Starting sessions from the Windows console . . . . . . .123

32.6 Emacs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
32.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123

32.6.1.1 Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
32.6.1.2 eLisp under Emacs . . . . . . . . . . . . . . . . . . . . . . . .123
32.6.1.3 Inferior Lisp under Emacs . . . . . . . . . . . . . . . . . . . .124
32.6.1.4 Maxima under Emacs . . . . . . . . . . . . . . . . . . . . . .124
32.6.1.5 Slime: Superior Interaction Mode for Emacs . . . . . . . .124

32.6.2 Installation and update . . . . . . . . . . . . . . . . . . . . . . . . . . .124
32.6.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124

32.6.3.1 Set start directory . . . . . . . . . . . . . . . . . . . . . . . . .124
32.6.3.2 Init file ".emacs" . . . . . . . . . . . . . . . . . . . . . . . . . .125
32.6.3.3 Customization . . . . . . . . . . . . . . . . . . . . . . . . . . .127
32.6.3.4 Slime and Swank setup . . . . . . . . . . . . . . . . . . . . .127
32.6.3.5 Starting sessions under Emacs . . . . . . . . . . . . . . . .127

32.7 Quicklisp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128
32.7.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128

32.8 Slime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
32.9 Asdf/Uiop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129

32.9.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
32.10 Latex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130

32.10.1 MikTeX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
32.10.2 Ghostscript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
32.10.3 TeXstudio, JabRef, etc. . . . . . . . . . . . . . . . . . . . . . . . . . . .131

32.11 Linux and Linux-like environments . . . . . . . . . . . . . . . . . . . . . . . .131
32.11.1 Cygwin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
32.11.2 MinGW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
32.11.3 Linux in VirtualBox under Windows . . . . . . . . . . . . . . . . . . .131

32.11.3.1 VirtualBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
32.11.3.2 Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131

33 Repository management: Git and GitHub 132
33.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132

33.1.1 General intention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132
33.1.2 Git and our local repository . . . . . . . . . . . . . . . . . . . . . . . .132

33.1.2.1 KDiff3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
33.1.3 GitHub and our public repository . . . . . . . . . . . . . . . . . . . .133

33.2 Installation and Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133

xi



33.2.1 Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
33.2.1.1 Installing Git . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
33.2.1.2 Installing KDiff3 . . . . . . . . . . . . . . . . . . . . . . . . . .133
33.2.1.3 Configuring Git . . . . . . . . . . . . . . . . . . . . . . . . . . .133

33.2.2 GitHub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134
33.2.2.1 Creating a GitHub account . . . . . . . . . . . . . . . . . . .134

33.3 Cloning the Maxima repository . . . . . . . . . . . . . . . . . . . . . . . . . .135
33.3.1 Creating a mirror on the local computer . . . . . . . . . . . . . . . .135
33.3.2 Creating a mirror on GitHub . . . . . . . . . . . . . . . . . . . . . . . .135

33.4 Updating our repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136
33.4.1 Setting up the synchronization . . . . . . . . . . . . . . . . . . . . . .136
33.4.2 Pulling to the local computer from Sourceforge . . . . . . . . . . .136
33.4.3 Pushing to the public repository at GitHub . . . . . . . . . . . . . .136

33.5 Working with the Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . .137
33.5.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137
33.5.2 Basic operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137
33.5.3 Committing, merging and rebasing our changes . . . . . . . . . .138

34 Building Maxima under Windows 139
34.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139
34.2 Lisp-only build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139

34.2.1 Limitations of the official and enhanced version . . . . . . . . . . .139
34.2.2 Recipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140

34.3 Building Maxima with Cygwin . . . . . . . . . . . . . . . . . . . . . . . . . . .140

X Maxima’s file structure, build system 141

35 Maxima’s file structure: repository, tarball, installer 142

36 Maxima’s build system 143

XI Lisp program structure (model), control and data flow 144

37 Lisp program structure 145
37.1 Supported Lisps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145

XII Appendices 146

A Glossary 147
A.1 MaximaL terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147
A.2 Lisp terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151

B SBCL init file .sbclrc 152

C Emacs init file .emacs 153

D Git configuration file ".gitconfig" 155

xii



Bibliography 156

Index 158

xiii



Part I

Historical Evolution,
Documentation

1



Chapter 1

Historical evolution

1.1 Overview

The computer algebra system Maxima was developed, originally under the name
Macsyma, from 1968 until 1982 at Massachusetts Institute of Technology (MIT) as
part of project MAC. Together with Reduce it belongs to the first comprehensive
CAS systems and was based on the most modern computational algorithms of the
time. Macsyma was written in MacLisp, a pre-Common Lisp which had also been
developed by MIT.

In 1982 the project was split. An exclusive commercial license was given to a com-
pany named Symbolics, Inc., created by Macsyma users and former MIT developers,
while at the same time the United States Department of Energy (DOE) obtained a
license for the source code of Macsyma to be made available (for a considerable
fee) to academic and government institutions. This version is known as DOE Mac-
syma. When Symbolics got into financial problems, enhancement and support for
the commercial Macsyma license was separated to a company named Macsyma,
Inc., which continued development until 1999. Financial failure of this company has
left the enhanced source code unavailable ever since.

From 1982 until his death in 2001, William Schelter, professor of mathematics at
the University of Texas, maintained a copy of DOE Macsyma. He ported Macsyma
from MacLisp to Common Lisp. In 1999 he requested and received permission from
the Department of Energy to publish the source code on the Internet under a GNU
public license. In 2000 he initiated the open source software project at Sourceforge,
where it has remained until today. In order to avoid legal conflicts with the still
existing Macsyma trademark, the open source project was named Maxima. Since
then, Maxima has been continuously improved.

1.2 MAC, MACLisp and MACSyMa: The project at MIT

1.2.1 Initialization and basic design concepts

While William A. Martin (1938-1981) had studied at MIT since 1960 and worked on [MosesMPH12]

his doctoral thesis under the computer science pioneer Marvin Minsky (1927–2016)
since 1962, Joel Moses (born 1941) entered MIT in 1963 and also took up a doctor-
ate under Marvin Minsky. After both having pursued various other projects in the

2



area of artificial intelligence and symbolic computation, and after having completed
their respective theses in 1967 (Joel Moses’ thesis is entitled Symbolic integration),
while staying at MIT they joined their efforts and initialized, together with Carl En-
gelman, the development of a computer algebra system called Macsyma, standing
for project MAC’s SYmbolic MAnipulator. It was meant to be a combination of all
their previous projects, an interactive system for solving symbolic mathematical
problems designed for engineers, scientists and mathematicians, with the capabil-
ity of two-dimensional display of formulas on the screen, an interpreter for step-by-
step processing, and using the latest and most sophisticated algorithms in symbolic
computation available at the time.

Since both liked Lisp for its short and elegant notation and the universal and flexible
list structure, and since they had used it in most of their previous projects, Lisp was
going to be the language in which Macsyma was to be written.

Another conceptual decision based on previous experiences was to use multiple
internal representations for mathematical expressions. Apart from the general rep-
resentation there would be a rational function representation for manipulating ra-
tios of polynomials in multiple variables, and another representation for power and
Taylor series. These different representations can still be found in today’s Maxima.

Bill Martin led the project. But Carl Engelman and his staff already left in 1969.

In 1971 the project was presented at a Symposium on Symbolic and Algebraic Ma- [MartFate71]

nipulation by William Martin and Richard Fateman (born 1946), who had joined the
project right from the beginning. He was a graduate student in the Division of En-
gineering and Applied Physics of Harvard, (1966-71) but found an opportunity to
pursue research down the road in Cambridge, at MIT. He received his Ph.D. from
Harvard, but de facto he had contributed to the Macsyma project. His thesis from
1971 on Algebraic Simplification describes various components of Macsyma which [FatemThe72]

he had implemented. From 1971-1974 he taught at MIT (in Mathematics), before
he left for University of California at Berkeley, in Computer Science. The Macsyma
project now comprised a considerable number of doctoral students and post-doc
staff members. But soon after this presentation William Martin left the project, too,
which was then led by Joel Moses.

1.2.2 Major contributors

Major contributors to the Macsyma software were:

William A. Martin (front end, expression display, polynomial arithmetic) and Joel [wikMacsy17]

Moses (simplifier, indefinite integration: heuristic/Risch). Some code came from
earlier work, notably Knut Korsvold’s simplifier. Later major contributors to the core
mathematics engine were:[citation needed] Yannis Avgoustis (special functions),
David Barton (solving algebraic systems of equations), Richard Bogen (special func-
tions), Bill Dubuque (indefinite integration, limits, power series, number theory,
special functions, functional equations, pattern matching, sign queries, Gröbner,
TriangSys), Richard Fateman (rational functions, pattern matching, arbitrary pre-
cision floating-point), Michael Genesereth (comparison, knowledge database), Jeff
Golden (simplifier, language, system), R. W. Gosper (definite summation, special

3



functions, simplification, number theory), Carl Hoffman (general simplifier, macros,
non-commutative simplifier, ports to Multics and LispM, system, visual equation ed-
itor), Charles Karney (plotting), John Kulp, Ed Lafferty (ODE solution, special func-
tions), Stavros Macrakis (real/imaginary parts, compiler, system), Richard Pavelle
(indicial tensor calculus, general relativity package, ordinary and partial differential
equations), David A. Spear (Gröbner), Barry Trager (algebraic integration, factoring,
Gröbner), Paul Wang (polynomial factorization and GCD, complex numbers, limits,
definite integration, Fortran and LaTeX code generation), David Y. Y. Yun (polynomial
GCDs), Gail Zacharias (Gröbner) and Rich Zippel (power series, polynomial factor-
ization, number theory, combinatorics).

1.2.3 The users’ community

A nationwide Macsyma users community, to which belonged, among others, DOE,
NASA and the US Navy, but also companies like Eastman Kodak, had evolved in
parallel to the ongoing development of the system at MIT, and they jointly used
computers and system resources provided by ARPA and ARPANET. Significant funds
for the project came from this user group, too. The Macsyma software had grown so
large that always the newest version of a PDP-10 computer from DEC was needed
to host it. Eventually, when DEC took a decision to change to the VAX architecture,
the whole Macsyma project had to be turned over to follow it.

1.3 Users’ conferences and first competition

In 1977 Richard Fateman, meanwhile professor of Computer Science in Berkeley,
organized the first one of what would become altogether three Macsyma Users’
Conferences.

1.3.1 The beginning of Mathematica

Stephen Wolfram, a physicist and former Macsyma user from Cal Tech, designed [ColeSMP81]

and presented his own commercial computer algebra system, called SMP, in 1981.
This eventually led to the development of Mathematica.

1.3.2 Announcement of Maple

At the 3. Macsyma Users’ Conference, which took place 1984 in Schenectady, [CharMap84]

N.Y., home of General Electric Research Labs, another new and commercial CAS
project, called Maple, was presented. Although strongly influence by Macsyma, it
aimed at increasing the speed of computation and at the same time at reducing
system memory size, so that it could operate on smaller and cheaper hardware and
eventually on personal computers.

4



1.4 Commercial licensing of Macsyma

1.4.1 End of the development at MIT

In 1981 the idea came up among Macsyma developers at MIT to form a company
which should take over development of Macsyma and market the product com-
mercially. This was possible due to the Bayh-Dole Act having recently passed the
Congress. It allowed universities under certain conditions to sell licenses for their
developments funded by the government to companies. The intention was to run
the CAS on VAX-like machines and possibly smaller computers. Joel Moses, who
had led the project since 1971, became increasingly engaged in an administrative
career at MIT (he was provost from 1995-1998), leaving him little time to continue
heading the Macsyma project. In 1982 the development of Macsyma at MIT had
come to an end.

1.4.2 Symbolics, Inc. and Macsyma, Inc.

Symbolics, Inc., a company that had been founded by former MIT developers to
produce LISP-based hardware, the so-called lisp machines, received an exclusive
license for the Macsyma software in 1982. While the product started well on VAX-
machines, the development of Macsyma for use on personal computers fell way
behind the competitive commercial systems Maple and Mathematica.

Lisp-machines did not become the commercial success that had been expected,
so Symbolics did not have the financial resources to continue the development of
Macsyma. In 1992 Symbolics sold the license to a company called Macsyma, Inc.
which continued to develop Macsyma until 1999. The last version of Macsyma is still
for sale on the INTERNET (as of 2017) for Microsoft’s Windows XP operating system.
Later versions of Windows, however, are not supported. Macsyma for Linux is not
available at all any more.

Nevertheless, mainly due to the work of a number of former MIT developers, like
Jeff and Ellen Golden or Bill Gosper, who had switched to work for Symbolics, the [GosperHP17]

computational capabilities of Macsyma were significantly enhanced during this pe-
riod of commercial development from 1982-1999. These enhancements are not
included in present Maxima, which is based on another branch of Macsyma devel-
opment, split off in 1982 under the name of DOE Macsyma. If these enhancements
from the Symbolics era were ever made available to Maxima in the future and could
be integrated into the present system, maybe at least in parts, this could certainly
result in a major improvement for the open source project.

1.5 Academic and US government licensing

1.5.1 Berkeley Macsyma and DOE Macsyma

Richard Fateman had gone to Berkeley already in 1974. He continued to work on
computers at MIT via ARPANET, predecessor of the Internet. He was interested
in making Macsyma run on computers with larger virtual memory than the exist-
ing PDP-10, and when the VAX-11/780 was available he fought for Berkeley to get

5



one. This achieved, his idea was to write a Lisp compiler compatible with MacLisp
and which would run on Berkley UNIX. Franz Lisp was created, the name having
been invented spontaneously for its resemblance with Franz Liszt; it was still a
pre-Common Lisp. With these resources rapidly developed, Fateman had in mind
to share usage of Macsyma with other universities around. But MIT resisted these
efforts.

UC Berkeley finally reached an agreement with MIT to be allowed to distribute
copies of Macsyma running on VAX UNIX. But this agreement could be recalled
by MIT when a commercial license was to be sold by them, which eventually was
done to Symbolics. About 50 copies of Macsyma were running on VAX systems at
the time. But Fateman wanted to go on and ported Franz Lisp to Motorola 68000,
so that Macsyma could run on prototypes of workstations by Sun Microsystems.

Around 1981, when the discussion about commercial licensing of Macsyma became
more and more intense at MIT, Richard Fateman and a number of other Macsyma
users asked the United States Department of Energy (DOE), one of the main and
therefore influential sponsors of the Macsyma project, for help to make MIT allow
the software to become available for free to everyone. What he had in mind was a
kind of Berkeley BSD license, which does not, like a GNU general public license, pre-
vent commercial exploitation of the software. On the contrary, such a license, which
can be considered really free, would not only allow everyone to use and enhance
the software, but also to market their product. This license, for instance, allowed
Berkeley students to launch startups with software developed at their school.

Finally, in 1982, at the same time when the commercial license was sold to Sym-
bolics, DOE obtained a copy of the source code from MIT to be kept in their library.
It was not made available to the public, its use remained restricted to academic
and US government institutions. For a considerable fee these institutions could ob-
tain the source code for there own development and use, but without the right to
release it to others. This version of Macsyma is known as DOE Macsyma.

The version of the Macsyma source code given to DOE had been recently ported
from MacLisp to NIL, New Implementation of Lisp, another MIT development. Unfor-
tunately, this porting was not really complete, MIT never finalized it, and the DOE
version was substantially broken. All academic and government users fought with
these defects. Some revisions were exchanged or even passed back to DOE, but
basically everyone was left alone with having to find and fix the bugs.

1.5.2 William Schelter at the University of Texas

From 1982 until his sudden death in 2001 during a journey in Russia, William Schel-
ter, professor of mathematics at the University of Texas in Austin, maintained one
of these copies of DOE Macsyma. He ported Macsyma from MacLisp to Common
Lisp, the Lisp standard which had been established in the meantime. Schelter, who
was a very prolific programmer and a fine person, added major enhancements to
DOE Macsyma.

6



1.6 GNU public licensing

In 1999, in the same year when development of commercial Macsyma terminated,
DOE was about to close the NESC (National Energy Software Center), the library
which distributed the DOE Macsyma source code. Before it was closed, William
Schelter asked if he could distribute DOE Macsyma under GPL. No one else seemed
to care for this software anymore and neither did DOE. Schelter received permission
from the Department of Energy to publish the source code of DOE Macsyma under
a GNU public license. In 2000 he initiated the open source software project at
Sourceforge, where it has remained until today. In order to avoid legal conflicts with
the still existing Macsyma trademark, the open source project was named Maxima.

Since 1982, the source code of DOE Macsyma had remained completely separated
from the commercial version of Macsyma. So the code of Maxima does not include
any of the enhancements, revisions or bug fixings made by Symbolics and Macsyma
Inc. between 1982 and 1999.

1.6.1 Maxima, the open source project since 2001

Judging from the number of downloads, Maxima today has about 150.000 users
worldwide. New releases come about twice a year. Installers are provided for Linux
and Windows (32 and 64 bit versions), but Maxima can also be built by anyone
directly from the source code, on Linux, Windows or Macintosh.

An enthusiastic group of volunteers, called the Maxima team and led by Robert
Dodier from Portland, Oregon, today maintains Maxima. Among the Lisp develop-
ers are Raymond Toy, Barton Willis (University of Nebraska, Kearney), Kris Katter-
john, David Billinghurst and Volker van Nek. Gunter Königsmann (Erlangen, Ger-
many) maintains the most popular user interface, wxMaxima, developed by Andrej
Vodopivec (Slovenia). Wolfgang Dautermann (Graz, Austria) created a cross com-
piling mechanism for the Windows installers. Yasuaki Honda (Japan) developed the
iMaxima interface running under Emacs. Mario Rodriguez (Spain) integrated and
maintains the plotting software, Viktor Toth (Canada) is in charge of new releases
and maintains the tensor packages. Jaime Villate (University of Porto, Portugal),
contributed to the graphical interface Xmaxima and designed the Maxima home-
page. Many more could be mentioned who contribute to Maxima in one way or the
other, for instance by writing and providing external software packages. For exam-
ple, Dimiter Prodanov (Belgium) recently developed a package for Clifford algebras,
Serge de Marre, also from Belgium, a package for solving Diophantine equations.
Edwin (Ted) Woollett (San Luis Obispo, California) has spent years writing a highly
sophisticated and free Maxima tutorial for applications in Physics, called Maxima
by example. Richard J. Fateman (Berkeley) and Stavros Macrakis (Boston), who al-
ready were chief designers and major contributors to the Macsyma software at MIT,
are both still with the Maxima project today, giving valuable advice to both devel-
opers and users on Maxima’s principal communication channel, the mailing list at
Sourceforge.

7



1.7 Further reading

A review of Macsyma is a long article by Richard Fateman in IEEE Transactions on [FatemanRM89]

Knowledge and Data Engineering from 1989, available as free PDF. Fateman writes
in the abstract:

"We review the successes and failures of the Macsyma algebraic manipulation sys-
tem from the point of view of one of the original contributors. We provide a ret-
rospective examination of some of the controversial ideas that worked, and some
that did not. We consider input/output, language semantics, data types, pattern
matching, knowledge-adjunction, mathematical semantics, the user community,
and software engineering. We also comment on the porting of this system to a vari-
ety of computing systems, and possible future directions for algebraic manipulation
system-building."

What better inspiration for the following chapters can we wish for?

8



Chapter 2

Documentation

2.1 Introduction

It is our feeling that Maxima’s documentation can be improved. Both as a user
and even more as a developer one would like to have much more information at
hand than what the official Maxima manual, the other internal documentation that
comes with the Maxima installation, and the comments in Maxima’s program code
provide.

Especially in the beginning, the user will often not understand the information in
the manual easily. It contains a concise description of the Maxima language, here
abbreviated MaximaL, but primarily as a reference directed to the very experienced
user. It takes years to really understand and efficiently use a CAS. The beginner will
need further explanation of all the implications of the condensed information from
the official manual, more examples and a better understanding of the overall struc-
ture of the complex Maxima language (it comprises of thousands (!) of different
functions and option variables).

Numerous external tutorials, some of them generally covering Maxima’s mathemat-
ical capabilities, others restricted to applications of Maxima in the most important
fields, such as Physics, Engineering or Economics, have been written and are of
immense help for the beginner. Some of them are so comprehensive that they
come close to a reference manual. Our intention is not to write a tutorial, but a
manual, directed to a broader audience than the existing one, ranging from the still
unexperienced user to the Lisp developer.

A considerable number of user interfaces have been developed, and the user will
be quite lost about judging which one will best fit his needs.

Users and developers wanting to build Maxima themselves will find little documen-
tation of the build process, especially if they want to work under Windows.

Even for an experienced Lisp developer the structure of Maxima’s huge amount of
program code will not be easy to understand. There is almost no documentation
besides the program code, and this code itself is poorly documented, having been
revised by many hands over many years. There are inconsistencies, forgotten sec-
tions, relics of ancient Lisp dialects and lots of bugs. The complicated process of
Maxima’s dynamic scoping and the information flow within the running system are

9



hard to keep track of. Very few of Maxima’s few Lisp developers really overlook it
completely.

This obvious lack of documentation motivated us to start the Maxima Workbook
project. But before diving into it, let us get an overview about exactly what sources
and what extend of information we have available already. As a first reference, the
user should consult the bibliography contained in Maxima’s official documentation
page.

2.2 Official documentation

2.2.1 Manuals

2.2.1.1 English current version

The official Maxima manual in English is updated with each new Maxima release. It [MaxiManE17]

is included in HTML format, as PDF and as the online help in each Maxima installer
or tarball. It can also be built when building Maxima from source code. Our Maxima
Workbook is primarily based on this documentation.

2.2.1.2 German version from 2011

A German version of the manual exists. It is also distributed with the Maxima in- [MaxiManD11]

stallers and tarballs. Note, however, that it reflects the status of release 5.29, it is
currently not being updated. Compared to the English version, it contains numer-
ous introductins, additional comments and examples and a much more complete
index. It was translated/written by Dieter Kaiser in 2011. Many of his amendments
and improvements have been incorporated in the Maxima Workbook. The author
wishes to express his thanks to Dieter Kaiser for his pioneer work in improving the
Maxima documentation.

2.3 External documentation

2.3.1 Manuals

2.3.1.1 Paulo Ney de Souza: The Maxima Book, 2004

Paulo Ney de Souza has written, together with Richard Fateman, Joel Moses and Cliff [SouzaMaxB04]

Yapp, one of the most comprehensive Maxima manuals. Unfortunately, the project
has not been finalized and is no longer updated, the last version dating from 2004.
In particular, the Maxima Book contains detailed information about different user
interfaces, including installation instructions.

2.3.2 Tutorials

2.3.2.1 Zachary Hannan: wxMaxima for Calculus I + II, 2015

This tutorial by Zachary Hannan from Solano Community College, Vallejo, Ca., al- [HanMC1-15]
[HanMC2-15]though having wxMaxima in its title, really covers the CAS Maxima, viewed through

the wxMaxima user interface. Two volumes of about 160 pages each cover basic

10

http://maxima.sourceforge.net/documentation.html
http://maxima.sourceforge.net/documentation.html


methods of using Maxima to solve problems from Calculus. Volumes on other fields
of application are to follow.

2.3.2.2 Wilhelm Haager: Computeralgebra mit Maxima: Grundlagen der
Anwendung und Programmierung, 2014

Wilhelm Haager’s major work on the CAS Maxima was published 2014 in German [HaagCAM14]

at Hanser Verlag. This tutorial has over 300 pages and comes close to a compre-
hensive manual of the Maxima language. For example, rule-based programming is
coverd in a separate chapter, data transfer to other programs and the implications
of Lisp are treated. A very valuable publications that one would like to see available
in English, too.

2.3.2.3 Wilhelm Haager: Grafiken mit Maxima, 2011

A tutorial in German on graphics with Maxima of about 35 pages, in the typical, [HaagGM11]

well-edited Haager style.

2.3.2.4 Roland Stewen: Maxima in Beispielen, 2013

Roland Stewen from Rahel Varnhagen Kolleg in Hagen, Germany, has written a [StewenMT13]

Maxima tutorial in German of some 400 pages primarily addressed to highschool
students. It is available online in html format and can be downloaded as PDF. The
document is clearly written, well structured, contains a detailed table of content,
an index, a bibligraphy, and can be highly recommended for the intended purpose.

2.3.3 Physics

2.3.3.1 Edwin L. (Ted) Woollett: "Maxima by Example", 2018, and "Com-
putational Physics with Maxima or R"

This material is so impressive and far-reaching, we don’t dare to comment on it [WoolMbE18]

yet. Certainly the best and most inspiring tutorial there is about Maxima, and Ted
Woollett’s work is still continuing!

2.3.3.2 Timberlake and Mixon: Classical Mechanics with Maxima, 2016

In their series Undergraduate Lecture Notes in Physics, Springer in 2016 published [TimbCMM16]

Classical Mechanics with Maxima, written by Todd Keene Timberlake, Prof. of Physics
and Astronomy, and J. Wilson Mixon, Jr., Prof. Emeritus of Economics, both at Berry
College, Mount Berry, Georgia. This elegantly written, professionally styled and
therefore well readable book contains on some 260 pages applications of Maxima
to problems from classical mechanics at the undergraduate level. After opening
the view to a wide range of problems for symbolical computation from the field of
Newtonian mechanics, the book focuses on the programming facilities inherent in
the Maxima language and on the methodology and techniques of how to transform
sophisticated algorithms for the symbolical or numerical solution of problems from
mathematical physics into Maxima. Graphical representations of the data obtained
are always in the center of interest, too, and throughout the book vividly illustrate
the results from computations.

11



2.3.4 Engineering

2.3.4.1 Andreas Baumgart: Toolbox Technische Mechanik, 2018

Andreas Baumgart from Hochschule für Angewandte Wissenschaften, Hamburg, [BaumgTM18]

has created an extensive and very well designed internet site for illustrating how
problems in engineering mechanics can be solved with Maxima and Matlab. The
site is in German.

2.3.4.2 Wilhelm Haager: Control Engineering with Maxima, 2017

This well-illustrated tutorial of some 35 pages has been written by Wilhelm Haager [HaagCEM17]

from HTL St. Pölten, Austria. It shows applications of Maxima in the field of Electrical
Engineering.

2.3.4.3 Tom Fredman: Computer Mathematics for the Engineer, 2014

A free tutorial of 135 pages covering both Maxima and Octave has been written [FredmCME14]

by Tom Fredman of Abo Akademi University, Finnland for applications in Engineer-
ing. Its bibliography contains a number of other sources for Maxima applied to
engineering.

2.3.4.4 Gilberto Urroz: Maxima: Science and Engineering Applications,
2012

The extensive tutorial by Gilberto Urroz used to be available online for free, but now [UrrozMSE12]

comes as a self-published paperback for a very moderate price, considering its size
of 438 pages. It contains a large number of applications in engineering.

2.3.5 Economics

2.3.5.1 Hammock and Mixon: Microeconomic Theory and Computation,
2013

J. Wilson Mixon, Jr., Professor Emeritus of Economics at Berry College, Mount Berry, [HammMTC13]

Georgia, published Microeconomic Theory and Computation. Applying the Maxima
Open-Source Computer Algebra System together with Michael R. Hammock in 2013
with Springer. This extensive work of about 385 pages shows how Maxima can be
applied to solve a wide variety of symbolical and numerical problems that arise in
the field of economics and finance, from exploring empirical relationships between
variables up to modeling and analyzing microeconomic systems. This is the most
comprehensive book written so far which demonstrates the usefulness of Maxima
in Economic Sciences.

2.3.5.2 Leydold and Petry: Introduction to Maxima for Economics, 2011

A detailed Maxima tutorial of some 120 pages with applications to Economics has [LeydoldME11]

been written by Josef Leydold and Martin Petry from Institute for Statistics and
Mathematics, WU Wien. It is based on version 5.25 and was last published in 2011.
It is available online as PDF.

12



2.4 Articles and Papers

A very comprehensive bibliography can be found in [SouzaMaxB04].

2.4.1 Publications by Richard Fateman

Richard J. Fateman, Prof. Emeritus of University of California at Berkeley, Depart-
ment of Computer Science, who has accompanied this CAS for 50 years, has pub-
lished a large number of articles and other papers on Macsyma/Maxima. Subjects
range from specific technical and algorithmic problems to reflections about the his-
tory of Macsyma’s development and its place in the evolution of CAS in general.
Most references can be found on his Berkeley homepage

http://people.eecs.berkeley.edu/ fateman/.

A considerable number of very interesting papers is available for free download at

https://people.eecs.berkeley.edu/ fateman/papers/.

2.5 Comparison with other CAS

2.5.1 Tom Fredman: Computer Mathematics for the Engineer, 2014

A free tutorial of 135 pages covering both Maxima and Octave has been published [FredmCME14]

in 2014 by Tom Fredman of Abo Akademi University, Finnland.

2.6 Internal and program documentation

2.7 Mailing list archives

13

http://people.eecs.berkeley.edu/~fateman/
https://people.eecs.berkeley.edu/~fateman/papers/


Part II

Basic Operation

14



Chapter 3

Basics

3.1 Introduction

3.1.1 REPL: The read-evaluate-print loop

Maxima is written in the programming language Lisp. Originally, before this lan-
guage was standardized, MacLisp, a dialect developed at MIT, was used, later the
Maxima source code was translated to Common Lisp, the Lisp standard still valid
today. One of the key features of Lisp is the so-called REPL, the read-evaluate-
print loop. When launching Lisp, the user sees a prompt where he can enter a Lisp
form. The Lisp system reads the form, evaluates it and displays the result. After
having done this, Lisp outputs the prompt again, giving back the initiative to the
user to start a new cycle of operation by entering his next form. The Lisp system
primarily works as an interpreter. Nevertheless, functions and packages can also
be compiled.

The same basic principle of operation has been employed to the Maxima language,
which in this book we will abbreviate MaximaL. Maxima also works with a REPL, as
being the cycle of interpretation of some expression entered by the user. (Later we
will see that Maxima program code can be compiled, too.) This design principle for
the user interface was easy to implement and therefore the natural choice in the
early times. With one exception, all Maxima front ends still use this principle today.
It may seem simple and out of date, but it offers a number of significant advantages
which the user will quickly learn to appreciate. The successive loops, as they are
operated sequentially and recorded chronologically on the screen, provide a natural
log which the user can scroll back at any time to see what he has done and what
results he has obtained so far. By simply copying and pasting, the user can take
both input and output from previous loops and insert it again at the input prompt.
Previous commands can be modified and reentered, and intermediate results can
be used for further computation.

But the benefits of this way of working reach even further: when programming in
MaximaL, the user can test out every bit of code in the REPL first, before integrating
it into his program. Bottom up, step by step, he builds the program, from the
most detailed routines to the most abstract layers, always basing every new part
on the direct experience in the test environment of his Maxima REPL. This way of
programming had proved to be very efficient in Lisp, and with good reason the

15



same could be expected for Maxima.

This basic principle of operation has been adopted by almost all other computer
algebra systems as well. By the way: most CAS’ are implemented in Lisp or a
Lisp-like language.

Thus, with regard to this general procedure of the REPL, MaximaL and Lisp have a
certain similarity. The user who takes the effort to learn Lisp will soon find out that
similarities reach much further. However, there are also significant differences.
While Lisp is a strictly and visibly list based language working with a non-intuitive,
but highly efficient prefix notation, MaximaL is much closer to traditional languages
of the Algol-type, more intuitive, more natural to the human user, with a structure
and notation closer to the mathematical one.

3.1.2 Command line oriented vs. graphical user interfaces

User interfaces in the early times were command line oriented, not graphical. They
worked in text mode, centered around a specific spot on the screen, called the
prompt. Input was done with the keyboard. On hitting enter, output followed the
input, separated by a simple line-feed. The REPL makes very intelligent use of this
initial situation, and many even very experienced CAS users still work with nothing
else today. In Maxima this interface is simply called the console.

Today, however, one is used to employ the full screen of the computer, the mouse
for most users being even more important as input medium than the keyboard. CAS
interfaces have been developed that take this evolution into account. wxMaxima
has been designed in a way similar to the Mathematica notebook, and just as the
latter one is most important for Mathematica, wxMaxima is now the predominant
Maxima front-end. The basic structural element of this interface is the cell, which is
a kind of a local command line interface. Multiple cells can be created in a Maxima
session, allowing the user to work with multiple command line interfaces in parallel.
This shows that the basic structure of working with the CAS does not significantly
change when moving from the console to wxMaxima. However, the output is no
longer displayed in one-dimensional text mode, but in two-dimensional graphical
mode, allowing mathematical formulas to be represented in a much more readable
way.

We should mention here already that wxMaxima, being based on wxWidgets, has
significant drawbacks if it comes to error handling, sometimes making it less ef-
ficient for sophisticated MaximaL programming and debugging compared to the
other front-ends. Between the original console and wxMaxima are a number of
Maxima user interfaces which keep the singular REPL, but integrate it in some kind
of more graphical environment. Examples are XMaxima and iMaxima.

Since Gnuplot has been integrated into Maxima, output of functions can be done
in a fully graphical way with 2D- and 3D-plots in separate windows. 2D-plots can
be scrolled in four directions, while 3D-plots can even be turned around easily and
freely, with surfaces of adaptable transparency, to be viewed from all perspectives,
inside and out, like objects in a CAD program.

16



3.2 Input and output: using the Maxima REPL at the
interactive prompt

3.2.1 Input and output tags

In order to make backward references easier, the cycles of operation of the Maxima
REPL are numbered consecutively. On launching a Maxima session at the Maxima
console, the user sees the first input tag.

(%i1)

Now he can input a MaximaL expression to be evaluated. We call this a statement
or form. Enter starts evaluation. The result (the value returned) is shown with an
output tag having the same number as the input tag. Then a new input tag appears,
introducing the next cycle of operation.

(%i1) 2+3;
(%o1) 5
(%i2)

wxMaxima shows a slightly different behavior. The input tag appears only at eval-
uation time. Enter will only cause a line-feed, having no other effect on evaluation
than a blank, while shift-enter starts evaluation. When an input expression is an as-
signment, the corresponding output expression displays no numbered output tag,
but instead the symbol to the left of the assignment in parentheses. If the input
expression is only a symbol, the normal output tag is displayed.

(%i1) temp:-30.5;
(temp) -30.5
(%i2) temp;
(%o2) -30.5

linenum [variable]

Maxima keeps the current tag number in the global variable linenum. Entering
linenum:0 or kill(all) resets the input and output tag number to 1.

(%i17) linenum:0;
(%o0) 0
(%i1) a;
(%o1) a

inchar default: "%i" [variable]
outchar default: "%o" [variable]

These global variables contain the symbols used in input and output tags. They can
be changed by the user.

3.2.2 Statement termination operators

; [postfix operator]
$ [postfix operator]

17



, [infix operator]

After entering an input expression, either a semicolon or a dollar sign is expected as
a statement termination operator. In both cases the next output tag is assigned the
result from evaluation of the input expression, but in the latter case, output is not
displayed on the screen. Multiple expressions can be entered in the same line, but
each of them needs a termination character. They are also expected at the end of
every input expression to be processed from a file. Inside of a compound statement,
however, the individual statements are not separated by a colon or dollar sign, but
by a comma.

3.2.3 Format for input and output

In this section we only introduce the basics. For special options see the next chap-
ter.

3.2.3.1 One- and two-dimensional form

Maxima and all of its front-ends allow input of mathematical expressions only in
one-dimensional form. Parentheses have to be used to group subexpressions, e.g.
the numerator and denominator of a fraction.

display2d default: true [variable]

Output will normally be displayed in two-dimensional form, including in the command-
line mode of the console. If the option variable display2d is set to false, output will
be displayed in one-dimensional form as in the input.

3.2.3.2 Entering and display of special characters

The standard Maxima console does not allow for entering and display of special
characters. iMaxima displays in Latex output form, thus allowing for the display of
special characters. Only wxMaxima allows entering special characters from palettes
and also displays them.

3.2.3.3 Display of multiplication operator

The * (asterisk) operator for multiplication cannot be omitted in input; a blank does
not mean multiplication.

stardisp default: false [variable]

In output, * normally is not displayed, here blank means multiplication. When
stardisp is set to true, however, the * is displayed.

3.2.4 Backward references

Certain system variables allow for easy reference of previous (or current) Maxima
input and output. We start with the output.

18



3.2.4.1 System variables for output

% [variable]

This system variable contains the output expression most recently computed by
Maxima, whether or not it was displayed, i.e. the expression with output tag (%on),
n ∈ N being the most recent cycle having been evaluated. When the output was
not displayed, this output tag is not visible on the screen either.

% is recognized by batch and load. In a file processed by batch, % has the same
meaning as at the interactive prompt. In a file processed by load, % is bound to the
output expression most recently computed at the interactive prompt or in a batch
file; % is not bound to output expressions in the file being processed.

Note that a :lisp command does not create an output tag and therefore cannot be
referenced by %.

%th(n) [function]

This system function returns the n-th previous output expression, n ∈ N. Its behavior
corresponds to %.

%on [variable]

This system variable contains the output expression with output tag (%on), n ∈ N.
Its behavior corresponds exactly to %.

%% [variable]

In compound statements, namely (s1, . . . , sn), block, or lambda, this system variable
contains the value of the previous statement. At the first statement in a compound
statement, or outside of a compound statement, %% is undefined. %% is recog-
nized by batch and load, and it has the same meaning as at the interactive prompt.
A compound statement may comprise other compound statements. Whether a
statement be simple or compound, %% contains the value of the previous state-
ment. Within a compound statement, the value of %% may be inspected at a break
prompt, which is opened by executing the break function.

3.2.4.2 System variables for input

_ (underscore) [variable]

This system variable contains the most recently evaluated input expression, i.e.
the expression with input tag (%in), n ∈ N being the most recent cycle having
been evaluated. _ is assigned the input expression before the input is simplified
or evaluated. However, the value of _ is simplified (but not evaluated) when it is
displayed.

_ is recognized by batch and load. In a file processed by batch, _ has the same
meaning as at the interactive prompt. In a file processed by load, _ is bound to the
input expression most recently evaluated at the interactive prompt or in a batch
file. _ is not bound to the input expressions in the file being processed.

19



Note that a :lisp command is not associated with an input tag and cannot be refer-
enced by _.

(%i1) 13 + 29;
(%o1) 42
(%i2) :lisp $_

((MPLUS) 13 29)
(%i2) _;
(%o2) 42
(%i3) sin (%pi/2);
(%o3) 1
(%i4) :lisp $_

((%SIN) ((MQUOTIENT) $%PI 2))
(%i4) _;
(%o4) 1
(%i5) a: 13$
(%i6) a + a;
(%o6) 26
(%i7) :lisp $_

((MPLUS) $A $A)
(%i7) _;
(%o7) 2 a
(%i8) a + a;
(%o8) 26
(%i9) ev (_);
(%o9) 26

The above example not only illustrates the _ operator, but also nicely demonstrates
the difference between evaluation and simplification. Although in a broader sense
we often talk about "evaluation" when we want to indicate that Maxima processes
an input expression in order to compute an output, in the strict sense the meaning
of evaluation is limited to dereferencing. Everything else is simplification. In the
example above, only at %o6, %o8 and %o9 we see evaluation, as the symbol a is
dereferenced, i.e. replaced by its value. After this replacement, the addition of the
values constitutes another simplification.

%in [variable]

This system variable contains the input expression with input tag (%in), n ∈ N. Its
behavior corresponds exactly to _.

__ (double underscore) [variable]

This system variable contains the input expression currently being evaluated. Its
behavior corresponds exactly to _. In particular, when load (filename) is called
from the interactive prompt, __ is bound to load (filename) while the file is being
processed.

3.3 Basic notation

We now describe Maxima’s basic notation conventions which form the basis of
the MaximaL syntax. Note that statement termination operators were already de-

20



scribed above.

3.3.1 Syntax description operators

In order to facilitate describing the MaximaL syntax, we use a number of syntax
description operators. These do not form part of MaximaL itself and thus cannot
been entered in Maxima by the user.

〈. . .〉 [syntax description operator]

Optional elements, e.g. optional function parameters, are enclosed in angle brack-
ets. Example: see genmatrix.

| [syntax description operator]

Alternatives are separated by |. Exactly one of the alternative has to be selected.
More than two alternatives can be given by repeating the operator. Example: see
addcol.

3.3.2 Compound and separation operators

( , , . . . ) [matchfix operator]

While in Lisp any kind of list is enclosed in parentheses, in Maxima these are re-
served for specific lists, e.g. the list of parameters of an ordinary function definition,
the list of arguments of a function call, or a list of statements in a simple sequential
compound statement. The elements are separated by commas.

[ , , . . . ] [matchfix operator]

Square bracketes enclose data lists, e.g. the elements of a one-dimensional list, or
the the rows of a matrix. They also enclose the subscripts of a variable, array, hash
array, or array function. They are also used to enclose the local variable definitions
of a block. The elements are separated by commas.

(%i1) x: [a,b,c];
(%o1) [a,b,c]
(%i2) x[3];
(%o2) c
(%i3) array(y,fixnum,3);
(%o3) y
(%i4) y[2]: %pi;
(%o4) π
(%i5) y[2];
(%o5) π
(%i6) z[a]:b;
(%o6) b
(%i7) z[a];
(%o7) b
(%i8) g[k] := 1/(k^2+1);

(%o8)
1

k2 + 1
(%i9) g[10];

21



(%o9)
1

101

{ , , . . .} [matchfix operator]

Braces enclose sets. The elements are separated by commas. Note that the ele-
ments of a set, unlike a list, are not ordered.

, [infix operator]

Separator of elements of a list or set. Note that in Lisp, instead, the separation
character of a list is the blank.

3.3.3 Identity and relational operators

= [infix operator]
# [infix operator]
is (expr) [function]

= and # are the equation and inequation operators. They are binary operators.
Chains like a = b = c are not allowed.

When Maxima encounters an equation, its arguments, which means the left-hand
side and the right-hand side, are evaluated and simplified separately. The operator
= by itself does nothing more. It does not compare the two sides at all and the two
sides are not simplified against each other. An expression like a = b represents an
unevaluated equation, which might or might not hold. Unevaluated equations may
be passed as arguments to solve, algsys or some other functions.

(%i1) c:3$ d:3$
(%i3) a+a=c+d;
(%o3) 2a=6
(%i4) a+b=a+e;
(%o4) b+a=e+a;

Any desired simplification across the = operator has to be carried out manually. For
example, functions rhs(eq) and lhs(eq) return the right-hand side and left-hand side,
respectively, of an equation or inequation. Using them, we can indirectly achieve
some basic simplification of an unevaluated equation by subtracting one side from
the other, thus, bringing them both to one side. Of course, the user may write his
own simplification routines to handle specific situations, as for example to subtract
equal terms on both sides, to divide both sides by a common factor, etc.

(%i1) c:3$ d:3$
(%i3) eq: a+a=c+d;
(%o3) 2a=6
(%i4) eq/2;
(%o4) a=3

(%i5) eq: a+b=a+e;
(%o5) b+a=e+a;
(%i6) lhs(eq)-rhs(eq)=0;

22



(%o6) b-e=0;

Function is evaluates an equation to a Boolean value. is(a = b) evaluates a =
b to true if a and b, after each having been evaluated and simplified separately,
which includes bringing them into canonical form, are syntactically equal. This
means, string(a) is identical to string(b). This is the case if a and b are atoms
which are identical, or they are not atoms and their operators are all identical and
their arguments are all identical. Otherwise, is(a = b) evaluates to false; is never
evaluates to unknown.

Note that in contrast to function equal, is(a=b) does not check assumptions in Max-
ima’s database. Thus, Maxima properties of a and b are not considered, only their
values. Assumptions of equality cannot be specified with the = operator, only with
function equal.

(%i1) assume(a=b);
Error!

(%i2) assume(equal(a,b))$
(%i3) is(a=b);
(%o3) false
(%i4) is(equal(a,b));
(%o4) true

The negation of = is represented by #. is(a # b) evaluates a # b to true or false.
Note that because of the rules for evaluation of predicate expressions (in particular
because not expr causes evaluation of expr), not a = b is equivalent to is(a # b),
and not to a # b. Assumptions of inequality cannot be specified with the # operator,
only with function notequal.

In addition to function is, some other operators evaluate = and # to true or false,
namely if, while, unless, and, or, and not.

equal (a,b) [function]
notequal (a,b) [function]

These functions, by themselves, like = and #, do nothing more than evaluate both
arguments. Unlike a = b, however, equal(a,b) is not an unevaluated equation which
can be passed as an argument to solve, algsys or some other functions.

Functions equal and notequal can be used to specify assumptions with assume.

Function is tries to evaluate equal(a,b) to a Boolean value. is(equal(a,b)) evalu-
ates equal(a,b) to true, if a and b are mathematically equivalent expressions. This
means, they are mathematically equal for all possible values of their arguments.
Comparison is carried out and equivalence established by checking the Maxima
database for user-postulated assumptions, and by checking whether ratsimp(a-b)
returns zero.

Assumptions are stored as Maxima properties of the variables concerned. Thus,
comparison can be carried out and equivalence established between variables which
are unbound, having no (numerical or symbolical) values assigned. But compari-
son can also be carried out and equivalence established by retrieving the variables’

23



values (process of evaluation, dereferencing) and subsequent simplification. Of
course, a combination of both methods is possible, too.

(%i1) c:3$ d:3$
(%i3) equal(a+a, c+d);
(%o3) 2a=6
(%i4) equal(a+b, a+e);
(%o4) b+a=e+a;

(%i5) assume(equal(a,b))$ assume(e<f)$
(%i6) is(a=b);
(%o6) false
(%i7) is(equal(a,b));
(%o7) true
(%i8) is(equal(e,f));
(%o8) false

(%i9) is(x^2-1 = (x+1)*(x-1));
(%o9) false
(%i10) is(equal(x^2-1, (x+1)*(x-1)));
(%o10) true

(%i11) is(equal((a-1)*a, b^2-b));
(%o11) true

(%i12) is(equal(sinh(x), (%e^x-%e^-x)/2));
(%o12) unknown
(%i13) exponentialize: true$
(%i14) is(equal(sinh(x), (%e^x-%e^-x)/2));
(%o14) true

When is fails to reduce equal to true or false, the result is governed by the global
flag prederror. When prederror is true, is returns an error message. Otherwise
(default), it returns unknown.

notequal (a,b) represents the negation of equal(a,b). Because not expr causes
evaluation of expr, not equal(a,b) is equivalent to is(notequal(a,b)).

< [infix operator]
> [infix operator]
<= [infix operator]
>= [infix operator]

These are the relational operators. They are binary operators. Chains like a<b<c
are not allowed. Just like = and #, relational operators do nothing more than evalu-
ate and simplify their arguments separately. An expression like  < b is an uneval-
uated relational expression, which might or might not hold. Any desired simplifica-
tion across the relational operator has to be carried out manually. Function solve
does not accept relational expressions.

Relational operators can be used to specify assumptions with assume.

Function is tries to evaluate a relational expression like a<b to a Boolean value.

24



Comparison is carried out by checking Maxima’s database for user-postulated as-
sumptions, and by checking what ratsimp(a-b) returns. Thus, as for functions equal
and notequal, both Maxima properties of the variables concerned and their values
are considered.

(%i1) assume(-1<x, x<0)$
(%i2) is(diff((x-t)/(1+t),t)<0);
(%o2) true
(%i3) factor(diff((x-t)/(1+t),t));

(%o3) −
 + 1

(t + 1)2

When is fails to reduce a relational expression to true or false, the result is governed
by the global flag prederror. When prederror is true, is returns an error message.
Otherwise (default), it returns unknown.

In addition to function is, some other operators evaluate relational expressions to
true or false, namely if, while, unless, and, or, and not.

3.3.4 Assignment operators

: [infix operator]

This is the basic assignment operator. When the left-hand side is a simple variable
(not subscripted), : evaluates its right-hand side (unless quoted) and associates
that value with the symbol on the left-hand side.

(%i1) a:3;
(%o1) 3
(%i2) b:a; /* The right-hand side is evaluated before assigning. */
(%o2) 3
(%i3) c:’a; /* The right-hand side is not evaluated. */
(%o3) a
(%i4) ev(c); /* Evaluation of c. */
(%o4) 3

(%i1) b:a; /* The right-hand side evaluates to itself. */
(%o1) a
(%i2) a:c$ c:3;
(%o3) 3
(%i4) b; /* Simple evaluation of b. */
(%o4) a
(%i5) ev(b); /* Double evaluation of b. */
(%o5) c
(%i6) ev(ev(b)); /* Triple evaluation of b. */
(%o6) 3

Chain constructions are allowed; in this case all positions but the right-most one
are considered left-hand side.

(%i1) x : y : 3;
(%o1) 3
(%i2) x;

25



(%o2) 3
(%i3) y;
(%o3) 3

When the left-hand side is a subscripted element of a list, matrix, declared Maxima
array, or Lisp array, the right-hand side is assigned to that element. The sub-
script must name an existing element; such objects cannot be extended by naming
nonexistent elements.

When the left-hand side is a subscripted element of an undeclared Maxima array,
the right-hand side is assigned to that element, if it already exists, or a new element
is allocated, if it does not already exist.

When the left-hand side is a list of simple and/or subscripted variables, the right-
hand side must evaluate to a list, and the elements of the right-hand side are
assigned to the elements of the left-hand side, element by element, in parallel (not
in serial; thus evaluation of an element may not depend on the evaluation of a
preceding one).

(%i1) [a, b, c] : [4, 7, 10];
(%o1) [4, 7, 10]
(%i2) a;
(%o2) 4

:: [infix operator]

This is the indirect assignment operator. :: is the same as :, except that :: evaluates
its left-hand side as well as its right-hand side. Thus, the evaluated right-hand side
is assigned not to the symbol on the left-hand side, but to the value of the variable
on the left-hand side, which itself has to be a symbol.

(%i1) x : ’y;
(%o1) y
(%i2) x :: 123;
(%o2) 123
(%i3) x;
(%o3) y
(%i4) y;
(%o4) 123
(%i5) x : ’[a, b, c];
(%o5) [a, b, c]
(%i6) x :: [1, 2, 3];
(%o6) [1, 2, 3]
(%i7) a;
(%o7) 1
(%i8) b;
(%o8) 2
(%i9) c;
(%o9) 3

A value (and other bindings) can be removed from a variable by functions kill
and remvalue. These unassignment functions are more important than they might
seem. Unbinding variables from values no longer needed should be made a habit by

26



the user, because forgetting about assigned values is a frequent cause of mistakes
in following computations which use the same variables in other contexts.

3.3.5 Substitution of symbol by value in an expression

subst (eq_1, expr) [function]
subst ([eq_1,. . . ,eq_k], expr)

This is a special format of the general substitution function subst. It allows for
the substitution of symbols (or certain subexpressions) in an expression expr by
numerical values, other symbols, or expressions.

The eq_i are equations of the form b=a indicating substitutions to be made in expr.
For each equation, the right side will be substituted for the left in expr. subst(b=a,
c) is equivalent to subst(a, b, c). Like in the general form of subst, b must be an
atom or a complete subexpression of expr. The equations are substituted in serial
from left to right in expr.

sublis ([eq_1,. . . ,eq_k], expr) [function]

This is the same as the corresponding form of subst, but the substitutions are done
in parallel. As opposed to subst, the left side of the equation must be an atom; a
complete subexpression of expr is not allowed. The form with a single equation as
the first argument is not allowed, either.

(%i1) subst([a=b, b=c], a+b);
(%o1) 2 c
(%i2) sublis([a=b, b=c], a+b);
(%o2) c+b

While an assignment has a global effect, substitution affects only the expression
expr. Substitution should therefore be preferred whenever possible.

3.3.6 Function and macro definition operators

3.3.6.1 Function definition operator

:= [infix operator]

This is the function definition operator. A user function has to be defined before it
can be used, i.e. called. See section 26.2 for details.

3.3.6.2 Macro function definition operator

::= [infix operator]

This is the macro function definition operator. A MaximaL macro function is very
similar to a Lisp macro. The difference to an ordinary MaximaL function is the
following:

− a macro function when being called does not evaluate its arguments (before
the macro function itself is evaluated). We say that a macro function quotes its
arguments, because a Maxima quote operator inhibits evaluation of its arguments,

27



− the macro call returns a form which is itself evaluated in the context from which
the macro was called. Thus, what the macro function returns is itself a Maxima
statement which will subsequently be evaluated. The expression returned by a
macro call is called macro expansion, a term which again refers to the macro con-
cept in Lisp.

A macro function is otherwise the same as an ordinary function.

3.3.7 Miscellaneous operators

/* ... */ [matchfix operator]

This is the comment operator. Any input in-between will be ignored.

? [prefix operator]
? [prefix operator]

These are the documentation operators. ? placed before a system function name f
(and separated from it by a blank) is a synonym for describe (f). This will cause the
online documentation about system function f to be displayed on the screen.

?? placed before a system function name f (and separated from it by a blank) is a
synonym for describe (f, inexact). This will cause the online documentation about
function f and all other system functions having a name which starts with "f" to be
displayed on the screen.

3.4 Naming of identifiers

3.4.1 Naming specifications

3.4.1.1 Case sensitivity

Symbols (identifiers) in Maxima are case-sensitive, i.e. Maxima distinguishes be-
tween upper-case (capital) and lower-case letters. Thus, NAME, Name and name
are all different symbols and may denote different variables.

3.4.1.2 ASCII standard

Maxima identifiers may comprise alphabetic characters, the digits 0 through 9, the
underscore _, the percent sign %, and any special character preceded by the back-
slash character. A digit may be the first character of an identifier, if it is preceded
by a backslash. Digits which are the second or later characters need not be pre-
ceded by a backslash.

alphabetic [property]

Special characters may be declared alphabetic using the declare function. If so de-
clared, they need not be preceded by a backslash in an identifier. The special char-
acters declared alphabetic are initially %, and _. The list of all characters presently
declared alphabetic can be seen as the Lisp variable *alphabet*.

Since almost all special characters from the ASCII code set are in use for other
purposes in Maxima, often as operators for which the parser pays special attention,

28



it makes little sense to declare them alphabetic. Thus, we have taken an example
with non-ASCII characters (which does not make much more sense, as we will soon
see).

(%i1) declare("äöüÄÖÜß",alphabetic);
(%o1) done
(%i2) Größe : 123;
(%o2) 123
(%i3) :lisp *alphabet*
(_ % ä ö ü Ä Ö Ü ß)
(%i4) featurep("ä",alphabetic);
(%o4) true

All characters in the string passed to declare as the first argument are declared to
be alphabetic. Function featurep returns true, if all characters in the string passed
to it as the first argument have been declared alphabetic by the user or are the _
or % characters.

3.4.1.3 Unicode support

Recently, efforts have been made to include Unicode support in Maxima. It has to
be stated, however, that Unicode support is not a universal feature of Maxima, but
depends to some extend on the operating system, on the Lisp and on the front-end
used. Given that our actual system supports it, almost any Unicode character can
nowadays be used within a Maxima identifier, including in the first position. Thus,
we do not need to declare German Umlaute as alphabetic, we can just use them.
We can use Greek letters, too, or even Chinese.

Special attention has to be payed, though, when using non-ASCII characters. If
things work well on one system, this does not guarantee it will work without prob-
lems on another one. Besides, there might still be issues in some situations and
circumstances that have not been solved in a satisfactory way yet.

As a general statement we can say that Linux gives better and more consistent
Unicode support than Windows. Concerning the Lisp, we find that SBCL is always a
good choice, combining most efficient behavior with least problems. From the point
of view of the front-ends, wxMaxima takes most efforts to provide comprehensive
Unicode support.

3.4.1.3.1 Implementation notes

Maxima uses Lisp function alphabetp to determine whether a character is allowed
as an alphabetic character in an identifier. This function refers to CL system func-
tion alpha-char-p. In a working UTF8 environment, this will allow almost any Uni-
code character except for punctuation and digits. In addition, alphabetp checks the
global variable *alphabet* for characters declared alphabetic by the user.

29



3.4.2 Basic naming conventions

3.4.2.1 System functions and variables

In general, Maxima’s system functions and variables use lower-case letters only
and use the underscore character to separate words within a symbol, e.g. carte-
sian_product.

In order to clearly distinguish them from system functions, our own additional func-
tions and variables start with capital letters and use capital letters to separate
words within a symbol, e.g. ExtractCequations.

3.4.2.2 System constants

System constants like the imaginary unit i, the Euler’s number e, or the constants
π and γ are preceded by % in Maxima (i.e. %i, %e, %pi, %gamma) to make them
better distinguishable from ordinary letters or identifiers. One has to keep this in
mind in order not to be confused. Note in the following example that log denotes
the natural logarithm with base e. Maxima and its system functions return the input
expression, if they cannot evaluate it.

(%i1) %e^log(x);
(%o1) x
(%i2) e^log(x);

(%o2) elog()

(%i3) %pi;
(%o3) %pi
(%i4) float(%pi);
(%o4) 2.128231705849268
(%i5) float(pi);
(%o6) pi

wxMaxima will return π both in number 3 and 6. In 3 it denotes the constant, in 6
the lower-case Greek letter.

30



Chapter 4

Input and output

4.1 Input

4.1.1 General option variables

4.2 Output

4.2.1 General option variables

verbose default: false [option variable]

This global variable controls the amount of output printed by various function, e.g.
powerseries.

4.2.2 Variables generated by Maxima

In certain situations Maxima functions may generate there own new variables.

General variables are composed of a small g followed by a number, starting with
g1, g2, . . . Summation indeces beginn with a small i instead and are numbered
independently of the g-variables.

For instance, each time powerseries returns a power series expansion, it generates
a new summation index, starting with 1, 2, . . .

31



Chapter 5

Plotting

32



Chapter 6

Batch Processing

33



Part III

Concepts of Symbolic
Computation

34



Chapter 7

Data types and structures

7.1 Number

7.1.1 Introduction

7.1.1.1 Types

Maxima distinguishes four generic types of numbers: integer, rational number,
floating point number and big floating point number. There is no generic type for
complex numbers.

7.1.1.2 Predicate functions

numberp (expr) [predicate function]

If expr evaluates to an integer, a rational number, a floating point number or a
big floating point number, true is returned. In all other cases (including a complex
number) false is returned.

Note. The argument to this and the following predicate functions described in this
section concerning numbers must really evaluate to a number in order for the func-
tion to be able to return true. A symbol that does not evaluate to a number, even
if it is declared to be of a numerical type, will always cause the function to return
false. The special predicate function featurep (symbol, feature) can be used to test
for such merely declared properties of a symbol.

(%i1) c;
(%o1) c
(%i2) declare(c, even);
(%o2) done
(%i3) featurep(c, integer);
(%o3) true
(%i4) integerp(c);
(%o4) false
(%i5) numberp(c);
(%o5) false

35



7.1.2 Integer and rational numbers

7.1.2.1 Representation

7.1.2.1.1 External

Integers are returned without a decimal point. Rational numbers are returned as a
fraction of integers. Arithmetic calculations with interger and rational numbers are
exact. In principal, integer and rational numbers can have an unlimited number of
digits.

(%i1) a:1;
(%o1) 1
(%i2) b:-2/3;

(%o2) −
2

3

(%i3) 100!;
(%o3) 933262154439441526816992388562667004907159682643816214685929\

638952175999932299156089414639761565182862536979208272237582\
51185210916864000000000000000000000000

7.1.2.1.2 Internal

(%i1) a:1/2;

(%o1)
1

2

(%i3) :lisp $a
((RAT SIMP) 1 2)

7.1.2.1.2.1 Canonical rational expression (CRE)

7.1.2.2 Predicate functions

(%i1) a:1$ b:2$ c:0$ d:3/4;
(%i5) integerp(a);
(%o5) true
(%i6) evenp(c);
(%o6) true
(%i7) oddp(a-b);
(%o7) true
(%i8) nonnegintegerp(2*c*a);
(%o8) true
(%i8) ratnump(a+d);
(%o8) true

integerp (expr) [Predicate function]

If expr evaluates to an integer, true is returned. In all other cases false is returned.

evenp (expr) [Predicate function]

36



If expr evaluates to an even integer, true is returned. In all other cases false is
returned.

oddp (expr) [Predicate function]

If expr evaluates to an odd integer, true is returned. In all other cases false is
returned.

nonnegintegerp (expr) [Predicate function]

If expr evaluates to a non-negative integer, true is returned. In all other cases false
is returned.

ratnump (expr) [Predicate function]

If expr evaluates to an integer or a rationl number, true is returned. In all other
cases false is returned.

7.1.2.3 Type conversion

7.1.2.3.1 Automatic

If any element of an expression that does not contain floating point numbers evalu-
ates to a rational number, then all integers in this expression are, when evaluated,
converted to rational numbers, too, and the value returned is a rational number.

7.1.2.3.2 Manual

rationalize (expr) [Function]

Converts all floating point numbers and bigfloats in expr to rational numbers. Max-
ima knows a lot of identities but applies them only to exactly equivalent expres-
sions. Floats are considered inexact so the identities aren’t applied. rationalize
replaces floats with exactly equivalent rationals, so the identities can be applied.

It might be surprising that rationalize (0.1) does not equal 1/10. This behavior is
because the number 1/10 has a repeating, not a terminating binary representation.

(%i1) rationalize(0.1);

(%o1)
3602879701896397

36028797018963968

Note. The exact value can be obtained with either function fullratsimp (expr) or, if
a CRE form is desired, with rat(expr).

(%i1) rat(0.1);
rat: replaced 0.1 by 1/10 = 0.1

(%o1) /R/
1

10

37



7.1.3 Floating point numbers

7.1.3.1 Ordinary floating point numbers

Maxima uses floating point numbers (floating points) with double presicion. Inter-
nally, all calculations are carried out in floating point.

Floating point numbers are returned with a decimal point, even when they denote
an integer. The decimal point thus indicates that the internal format of this number
is floating point and not integer.

(%i1) a:1;
(%o1) 1
(%i2) float(a);
(%o2) 1.0

In scientific notation, the exponent of a floating point number can be separated by
either "d", "e", or "f". Output is always returned with "e", as it is used in all internal
calculations. Up to a certain number of digits, floating points given in scientific
notation are returned in normal, non-exponential form.

(%i1) a:2.3e3;
(%o1) 2300.0
(%i2) b:3.456789e-47
(%o2) 3.456789e-47

The file scientific-engineering-format.lisp1, if loaded, provides a feature for
having all floating points be returned in scientific notation, with one non-zero digit
in front of the decimal point and the number of significant digits according to the
value of fpprintprec. This feature is activated by setting the option variable scien-
tific_format_floats.

(%i1) load("scientific-engineering-format.lisp")$
(%i2) scientific_format_floats:true$
(%i3) a:2300.0;
(%o3) 2.3e3

Another feature of this file allows for all floating points to be returned in engineer-
ing format, that is with an exponent that is a multiple of three, with 1-3 non-zero
digits in front of the decimal point and the number of significant digits accord-
ing to the value of fpprintprec. If set, engineering_format_floats overrides scien-
tific_format_floats.

(%i1) engineering_format_floats:true$
(%i2) b:0.23
(%o2) 230.0e-3

If any element of an expression that does not contain bigfloats evaluates to a float-
ing point number, then all other numbers in this expression are, when evaluated,
transformed to floating point, and the numerical value returned is a floating point
number.

(%i1) a:1/4; b:23.4e2;

1RS only. In standard Maxima the file engineering-format.lisp provides only the engineering format.

38



(%o1)
1

4
(%o2) 2340.0
(%i2) a+b+c;
(%o2) 2340.25 + c

7.1.3.2 Big floating point numbers

In principal, big floating point numbers (bigfloats) can have an unlimited presicion.

Bigfloats are always represented in scientific notation, the exponent being sepa-
rated by "b".

If any element of an expression evaluates to a bigfloat number, then all other num-
bers in this expression, including ordinary floating point numbers, are, when evalu-
ated, converted to bigfloats, and the numerical value returned is a bigfloat.

bfloatp (expr) [Predicate function]

If expr evaluates to a big floating point number, true is returned. In all other cases
false is returned.

bfloat(expr) [Function]

Converts all numbers in expr to bigfloats and returns a bigfloat. The number of
significant digits in the returned bigfloat is specified by the option variable fpprec.

fpprec Default value: 16 [Option variable]

Sets the number of significant digits for output of and for arithmetic operations on
bigfloat numbers. This does not affect ordinary floating point numbers.

(%i1) bfloat(%pi);
(%o1) 3.141592653589793b0
(%i2) fpprec:32$ bfloat(%pi);
(%o3) 3.1415926535897932384626433832795b0

7.1.4 Complex numbers

7.1.4.1 Introduction

7.1.4.1.1 Imaginary unit

In Maxima the imaginary unit  with 2 = −1 is written as %i.

(%i1) sqrt(-1);
(%o1) %i
(%i2) %i^2;
(%o2) -1

7.1.4.1.2 Internal representation

There is no generic data type for complex numbers. Maxima represents them inter-
nally as a sum  +  b, realpart and imagpart each being of one of the four generic
types of numbers.

39



(%i1) a: 3+%i*5;
(%o1) 5 %i + 3
(%i2) :lisp $a
((MPLUS SIMP) 3 ((MTIMES SIMP) 5 $%I))
(%i2) p: polarform(a);

(%o2)
p

34e rctn
5
3

(%i3) :lisp $p
((MTIMES SIMP) ((MEXPT SIMP) 34 ((RAT SIMP) 1 2))
((MEXPT SIMP) $%E ((MTIMES SIMP) $%I ((%ATAN SIMP) ((RAT SIMP) 5 3)))))

7.1.4.1.3 Canonical order

The canonical order in which Maxima returns a complex-valued expression in stan-
dard form + b might not always seem very logical. Symbols are returned in inverse
alphabetical order, no matter whether they belong to the real or the imaginary part,
that is, whether they are multiplied by %i or not. In imaginary elements, %i pre-
ceeds the symbol. Numerical constants follow the symbols, the ones containing %i
preceeding the other ones. Within an imaginary element, the number preceeds %i.
However, in a sum of two elements, one being positive and the other one negative,
the positive element is always situated in front.
If powerdisp is set, the order of the sum is turned around, but not the order of the
product within imaginary elements.

(%i5) powerdisp:false$ /* default */
a + b*%i;
1 + 2*%i;
1 + b*%i;
-b*%i +1;

(%o2) i*b + a
(%o3) 2*i + 1
(%o4) i*b + 1
(%o5) 1 - i*b
(%i6) z+k*%i+b+a*%i+4+3*%i+2-%i;
(%o6) z+i*k+b+i*a+2*i+6

7.1.4.1.4 Standard form and polar form

Maxima distinguishes standard form and polar form of complex-valued expressions.
The standard form is obtained by function rectform, the polar form by function po-
larform. We get the real part of an expression in standard form with function real-
part, the imaginary part with imagpart. Function cabs returns the complex absolute
value, carg the complex argument of an expression in polar form.

7.1.4.1.5 Simplification

Complex expressions are, in contrast to real ones, not always simplified as much
as possibel automatically. Products of complex expressions can be simplified by
expanding them. Simplification of quotients, roots, and other functions of complex
expressions can usually be accomplished by using rectform.

40



7.1.4.1.6 Properties

Properties for complex numbers include real, complex, imaginary.

7.1.4.1.7 Code

Files: conjugate.lisp

7.1.4.1.8 Generic complex data type

There have been atempts in Maxima to introduce a generic data type for complex
numbers, see Maxima-discuss "Complex numeric type - almost done in numeric.lisp
but not activated - why?" (August 2017).

7.1.4.2 Standard form

rectform (expr) [Function]

Converts a complex expression to standard form  +  b with , b ∈ R. While the
imaginary part is parenthesized, if it contains more than one element, this is not
done for the real part. Maxima’s rules for canonical order imply that the real part
may appear before or after the imaginary part and even be split.

(%i1) rectform(z+k*%i+b+a*%i+4+3*%i+2-%i);
(%o1) z+i*(k+a+2)+b+6
(%i2) rectform(sqrt(2)*%e^(%i*%pi/4));
(%o2) i + 1

realpart (expr) [Function]

Returns the real part of expr. realpart and imagpart will work on expressions involv-
ing trigonometric and hyperbolic functions, as well as square root, logarithm, and
exponentiation.

imagpart (expr) [Function]

Returns the imaginary part of expr.

7.1.4.3 Polar form

polarform (expr) [Function]

Converts a complex expression to the equivalent polar form r e φ with r being the
complex absolute value and φ the complex argument.

cabs (expr) [Function]

Returns the complex absolute value of expr.

carg (expr) [Function]

Returns the complex argument of expr.

41



7.1.4.4 Complex conjugate

conjugate (expr) [Function]

Returns the complex conjugate of expr. Symbols, unless declared otherwise (com-
plex, imaginary) or evaluating to a complex expression, are considered real. con-
jugate knows identities involving complex conjugates and applies them for simplifi-
cation, if it can determine that the arguments are complex.

(%i1) conjugate (a + b*%i);
(%o1) a-ib
(%i2) conjugate (c);
(%o2) c
(%i3) declare (d, imaginary)$
(%i4) conjugate (d);
(%o4) -d
(%i5) polarform(1+2*%i);

(%o5)
p

5e rctn2

(%i6) conjugate(%);

(%o6)
p

5e− rctn2

(%i7) conjugate(a1*a2);
(%o7) a1 a2
(%i7) declare ([z1,z2], complex)$
(%i8) conjugate(z1*z2);

(%o8) z1 z2

(%i9) f:a+b*%i$
(%i10) (f+conjugate(f))/2;
(%o10) a

7.1.4.4.1 Internal representation

Internally, the complex conjugate is represented in the following way:

(%i1) declare(a,complex)$
(%i2) b:conjugate(a);

(%o8) 

(%o10) :lisp $b
(($CONJUGATE SIMP) $A)

7.1.4.5 Predicate function

complexp [Self-written predicate function]

If expr evaluates to a complex number, true is returned. In all other cases false is
returned.

complexp(expr):=if numberp(float(realpart(expr)))
and numberp(float(imagpart(expr))) then true;

42



(%i1) complexp(2/3);
(%o1) true
(%i2) complexp((2+3*%i)/(5+2*%i));
(%o2) true
(%i3) polarform(2+3*%i);

(%o3)
Æ

(13)e rctn
3
2

(%i4) complexp(%);
(%o4) true
(%i5) complexp(3*cos(%pi/2)+7*%i*sin(0.5));
(%o5) true
(%i6) complexp(a+b*%i);
(%o6) false

7.2 Constant

7.3 String

7.4 Sharing of data

It is very important to understand a concept employed not only in Lisp and Maxima,
but also in many other programming languages and CAS’, the concept of sharing
data instead of copying them. Assignment of a list or matrix (or a vector, which is
always a list or a matrix) from symbol a to symbol b will not create a copy of this
data structure which then belongs to b, but will share the existing data structure
belonging to symbol a. This means that symbol b will only receive a pointer to the
existing data structure, not a new one with the same values as the one of symbol
a.

Now if symbol a is killed or is assigned a completely new data structure, the old
data structure will remain belonging only to symbol b. But if the old data structure
of symbol a is only modified in the value of some element, symbol b will evaluate
to this modified data structure of symbol a. And vice versa, if symbol b modifies
the value of some element of the shared data structure, symbol a will evaluate to
this modified structure.

(%i1) a:[1,2,3];
(%o1) [1,2,3]
(%i2) b:a;
(%o2) [1,2,3]
(%i3) a:[4,5,6];
(%o3) [4,5,6]
(%i4) b;
(%o4) [1,2,3]

(%i1) a:[1,2,3];
(%o1) [1,2,3]
(%i2) b:a;
(%o2) [1,2,3]
(%i3) a[2]:x$ a;

43



(%o4) [1,x,3]
(%i5) b;
(%o5) [1,x,3]
(%i6) b[3]:y$ b;
(%o7) [1,x,y]
(%i8) a;
(%o8) [1,x,y]

Note: Adding columns or rows to an existing matrix with addcol or addrow will
create a new data structure with respect to sharing.

In order to create a real copy of an existing list or matrix, the functions copylist and
copymatrix have to be used.

7.5 List

7.6 Matrix

7.7 Structure

7.8 Canonical rational expression (CRE)

A canonical rational expression (CRE) is a special internal representation of a Max-
ima expression. It is explained in section 7.1 of [FatemMGS79, pp. 11-12].

44



Chapter 8

Expressions, operators

8.1 Operators

"="(a,b) is a functional notation equivalent to a=b.

45



Chapter 9

Evaluation

A symbol which is not bound evaluates to itself.

(%i1) a;
(%o1) a

9.1 Functions for evaluation

at (epr | [epr1, . . . , eprn], eqn | [eqn1, . . . , eqnn]) [function]

expr or the expressions in the list are evaluated with its variables assuming the val-
ues as specified in eqn or the list of equations. at carries out multiple substitutions
in parallel.

46



Chapter 10

Simplification

10.1 Properties for simplification

10.2 Functions for simplification

PullFactorOut(expr, factor) [function of rs_simplification]

Pulls factor out of expr. If expr is a list, a vector or a matrix, factor is pulled out of
every component.

PullMinusIntoFraction (expr, num_denom, side) [funktion of rs_simplification]

A minus sign in front of an expression or any side of an equation is pulled into the
numerator (1) or denominator (2) of this fraction. Only if expr is an equation, the
side (lhs=1, rhs=2) is given as a third parameter.

pull_minus_into_fraction (expr ,num_denom, [ side ] ) := block ( [ ] ,
i f op(expr )="=" then ( /* Main operator i s "="

* /
expr : substpart ("+" ,expr , side [1] ,0) ,
substpart(−part (expr , side [1] ,num_denom) ,expr , side [1] ,num_denom)

)
else ( /* Main operator i s "−"

* /
expr : substpart ("+" ,expr ,0) ,
substpart(−part (expr ,num_denom) ,expr ,num_denom)

)
)$

47



Chapter 11

Knowledge database system

In Maxima, variables and user-defined functions can be associated not only with
values, but also with properties and with assumptions. Properties contain infor-
mation about the type of value the respective variable or function is supposed to
take, while assumptions limit the numerical range of their allowed values. Both
categories of information can be used by Maxima or by user-written functions for
computation and simplification of expressions comprising these variables.

Maxima’s mathematical knowledge database system was written by Michael Gene-
sereth while studying at MIT in the early 1970s. Today he is professor of computer
science at Stanford University.

Before looking closer at the information it contains, namely properties and assump-
tions, we will focus on general features of this database system. We describe its
user interface first, then some aspects of the implementation.

11.1 Facts and contexts: The general system

11.1.1 User interface

11.1.1.1 Introduction

Properties and assumptions associated with a Maxima symbol are called facts.
There are certain facts already provided by the system, for instance about general
and predefined mathematical constants such as e, i or π. In addition, the user may
assign one or more of a number of system-defined properties to any of his variables
or user functions. He can also define his own new property types, called features,
and assign them to symbols just like the system-defined properties. Finally, using
assumptions, he can impose restrictions on the numerical range of values to be
taken by a symbol denoting a variable or function.

Some, but not all Maxima functions recognize facts. For example, solve does not
consider assumptions (it was written before the knowledge database was intro-
duced into Maxima), whereas to_poly_solve, a more recent and sometimes more
powerful solver, does. User-written functions, of course, may also take facts into
account.

If they need certain information about user variables in order to proceed operating
on them, some Maxima functions will ask the user interactively at the time they are

48



called. This is a useful procedure in order to reach computational results, since the
user may not be aware of any such necessity in advance. He can, however, declare
the corresponding properties or assumptions prior to calling the function in order to
avoid these questions.

Maxima’s mathematical knowledge database system organizes facts in a hierarchi-
cal structure of contexts. The context named global forms the root of this hierarchy,
the parent of all other contexts. It contains information for instance about prede-
fined constants, e.g. %e, %i or %pi, and their respective values. When a Maxima
session is started, the user sees a child context of global named initial. If he does
not specify any other context, all facts, that means all properties created by declare
and all assumptions created by assume, will be stored in this context. The context
which presently accomodates newly declared assumptions is called the current con-
text. Function facts may be used to list all facts contained in a certain context, or
all facts defined for a particular symbol and kept within the current context.

The user may create child contexts to any existing context, including global. The
facts that are visible and are used for deductions at any moment are those of the
current context plus all of its parent contexts. In addition, the user may activate
any other context freely at will with function activate. This context plus all of its
parent contexts will then also be visible in addition to the current context and its
parents. The user can deactivate any explicitely activated context with deactivate.
A list of all activated contexts is kept in activecontexts.

Function context can be used to show the current context or to change it. New
contexts are defined by either newcontext or supcontext. contexts gives a list of
all contexts presently defined.

The context mechanism makes it possible for the user to bind together and name a
collection of facts. Once this is done, he can activate or deactivate large numbers of
previously defined facts merely by activating or deactivating the respective context.
Facts contained in a context will be retained in storage until destroyed one by one
by calling forget, or as a whole by calling killcontext to destroy the context to which
they belong.

The terms "subcontext" and "sup(er)context" are used in Maxima, but they have
some inherent ambiguity. A child context is always bigger than its parent context
as a collection of facts, because the facts a child context contains are added to the
facts already active in the line of its parent contexts. (It is not possible to deacti-
vate parent contexts to the current context or any other explicitly active context).
The child context therefore is a superset of the parent context. Thus, function sup-
context creates a child context to the current context. Parent contexts are called
subcontexts. This terminology, however, contradicts the normal description of a
tree structure, where one would naturally tend to name a leave a sub-element to
its parent. There is another interpretation contradicting the terminology used in
Maxima. If a context is bigger because it contains more facts, on the other hand
it is smaller, because every additional fact narrows and constrains the possibilities
for the corresponding variable or function to take values. Due to this ambiguity we
stay with the parent-child terminology.

49



Facts and contexts are global in Maxima, even if the corresponding variables are
local. However, it is possible to make facts associated with a local variable local,
too, by declaring (inside of the local environment) the respective local variable or
function a with the system function local(a).

Killing a variable or function  with kill(a) will not delete facts associated with .
Only kill(all) will delete everything, including the defined facts and contexts.

11.1.1.2 Functions and system variables

facts (item) [function]
facts ()

If item is the name of a context, which is either the current context, a parent of it,
a context on the list activecontexts, or a parent of it, facts (item) returns a list of
the facts in the specified context. In the case of all other contexts, it returns an
empty list. If item is not the name of a context, facts (item) returns a list of the
facts known about variable or function item in the current context.

facts () returns a list of the facts in the current context.

context default: initial [system variable and function]

The value of context indicates the current context. Binding context to a symbol
name will change the current context to name. If a context with this name does not
yet exist, it is created as a direct child to global (as done with function newcontext)
and then made to be the current context.

contexts default: [initial, global] [system variable]

This is a list of all contexts which are currently defined.

newcontext (name) [function]

Creates a new context as a direct child to global and makes it the current context.
If name is not specified, a pair of empty parenthses has to remain. In this case,
a new name is created at random by the gensym function. newcontext evaluates
its argument. newcontext returns name (if specified) or the newly created context
name.

supcontext (name, cont) [function]

Creates a new context name as a direct child to cont and makes it the current
context. If context is not specified, the current context will be the parent. If name
is not specified, a pair of empty parenthses has to remain. In this case, a new name
is created at random by the gensym function and the current context is used as
parent. supcontext evaluates its arguments. supcontext returns name (if specified)
or the newly created context name.

activate (contet1, ..., contetn) [function]

Adds the contexts contet1, ..., contetn to the list activecontexts. The facts in
these contexts are then available to make deductions. activate returns done if the

50



contexts exist, otherwise an error message.
Note that by activating a context, the facts of all its parent contexts also become
available for deductions, although these parent contexts are not added to the list
activecontexts.

deactivate (contet1, ..., contetn) [function]

Removes the contexts contet1, ..., contetn from the list activecontexts. The facts
in these contexts are then no longer available to make deductions. deactivate
returns done if the contexts exist (even if any one of them cannot be deactivated),
otherwise an error message.

Note that it is only possible to deactivate contexts that have previously been acti-
vated by activate. Facts within parent contexts of a context removed from the list
activecontexts are also no longer available for deductions, unless these contexts
are the current context or a parent of it, or any other context remaining on the list
activecontexts or any parent of it.

activecontexts [system variable]

This is a list of all contexts explicitely activated with function activate. Note that
this list does not include the (active) parent contexts of an activated context, nor
the current context or any of its parents.

killcontext (contet1, ..., contetn) [function]

Kills the contexts contet1, ..., contetn. killcontext evaluates its arguments. kill-
context returns done. If one of the killed contexts is the current context, its next
available direct parent context will become the new current context. If context ini-
tial is killed, a new, empty initial context is created. If a killed context has childs,
they will be connected to the next available parent of the killed context. killcontext,
however, refuses (by returning a corresponding message) to kill a context which is
on the list activecontexts or to kill context global.

11.1.2 Implementation

11.1.2.1 Internal data structure

11.1.2.2 Notes on the program code

11.2 Values, properties and assumptions

Values, properties and assumptions are independant of one another. They are not
cross-checked.

General statements on values in Lisp and MaximaL.

Predicates sometimes check properties, sometimes values.

Functions on assumptions don’t take actual values into consideration.

etc.

51



11.3 MaximaL Properties

11.3.1 User interface

11.3.1.1 Introduction

In Maxima, variables and user-defined functions can be associated not only with
values, but also with properties. Properties contain information about the kind of
variable or function which the respective symbol is to represent, or the type of value
which the respective variable or function is supposed to take.

The concept of properties is inherent in Lisp. In order to distinguish both types, we
will henceforth use the terms Lisp property to refer to the properties on the Lisp
level, and MaximaL property (sometimes also called: mathematical property) to
refer to the properties on the MaximaL level.

There are three types of MaximaL properties: system-declared, user-declared (some-
times also called: system-defined or predefined) and user-defined properties. System-
declared properties can only be declared for a symbol by the system. User-declared
properties are predefined properties which the user can declare for a symbol and re-
move from it. User-defined properties can be defined by the user and then declared
for a symbol and removed.

Unlike values, properties (except for the property value) are global in Maxima. Thus,
a property assigned to a local variable inside of a local environment (like a block or
a function) will remain associated with this symbol outside of the block or function
(after it has been called). This holds in particular for function definitions: a function
defined inside of a block will be global (once the block has been evaluated). In order
to prevent properties of a local variable  to become global, the variable has to be
declared local (a) inside of the local environment.

kill (a) not only unbinds the symbol , but also removes all associated properties.

11.3.1.2 System-declared properties

These are properties declared by Maxima that cannot be declared by the user, e.g.
value, function, macro, or mode_declare. System-declared properties, however,
can be removed by the user.

For instance, value itself is a system-declared property of a symbol, indicating that
it has been bound to a value. If a user defines a function f, the symbol f is declared
the property function by the system. Nevertheless, the user may bind f to a value,
too, and thus is declared the property value by the system in addition. f will now
behave as a variable or as a function, depending on the context. If the user removes
the property function from f, its function declaration will be lost and it will behave
solely as a variable. If the user removes value, too, the symbol f will be unbound
again and have no properties at all.

11.3.1.3 User-declared properties

These are pre-defined properties, which the user can assign to a variable or func-
tion with declare, or delete with remove. Properties are recognized by the simplifier

52



and other Maxima functions. There are general (featurep) or specific, e.g. con-
stantp, predicate functions which can test a certain symbol for having a specific
user-declared or user-defined property. properties returns all properties associated
with a specific symbol. propvars returns a list of all atoms that have a specific user-
declared or user-defined property. props is a list containing all atoms that have
been assigned any user-declared or user-defined property.

11.3.1.3.1 Properties of variables

integer [property]
noninteger [property]

Tells Maxima to recognize j as an integer or noninteger variable. Function askinte-
ger recognize this property, but integerp does not.

even [property]
odd [property]

Tells Maxima to recognize j as an even or odd integer variable. The properties even
and odd are recognized by function askinteger, but not by the predicate functions
evenp, oddp, and integerp.

(%i1 ) declare (n, even) ;
(%o1) done
(%i2 ) askinteger (n, even) ;
(%o2) yes
(%i3 ) askinteger (n) ;
(%o3) yes
(%i4 ) evenp(n) ;
(%o4) false

rational [property]
irrational [property]

Tells Maxima to recognize j as a rational variable or an irrational real variable.

real [property]
complex [property]
imaginary [property]

Tells Maxima to recognize j as a real, complex or pure imaginary variable.

constant [property]

The declaration of j to be constant does not prevent the assignment of a non-
constant value to j. Such an assignment, on the other hand, does not remove the
property constant from j. The following predicate function constantp not only tests
for a variable declared constant, but for a constant expression in general.

constantp (expr) [predicate function]

Returns true, if expr is a constant expression, otherwise false. An expression is
considered a constant expression, if its arguments are numbers (including ratio-

53



nal numbers as displayed with /R/), symbolic constants such as %pi, %e, or %i,
variables bound to a constant or declared constant by declare, or functions whose
arguments are constant. constantp evaluates its arguments. See the property con-
stant which declares a symbol to be constant.

scalar [property]
nonscalar [property]

Tells Maxima to recognize j as a scalar or nonscalar variable. The usual application
is to declare a variable as a symbolic vector or matrix. Makes j behave as does
a list or matrix with respect to the dot operator. The following predicate functions
scalarp and nonscalarp not only test variables declared scalar or nonscalar.

scalarp (expr) [predicate function]
nonscalarp (expr) [predicate function]

scalarp returns true, if expr is a number, a constant, or a variable declared scalar,
or composed entirely of numbers, constants, and such declared variables, but not
containing matrices or lists. nonscalar returns true if expr contains atoms declared
nonscalar, or lists, or matrices.

nonarray [property]

Tells Maxima to consider j not to be an array. This prevents multiple evaluation of
a subscripted variable.

11.3.1.3.2 Properties of functions

integervalued [property]

Tells Maxima to recognize j as an integer-valued function.

increasing [property]
decreasing [property]

Tells Maxima to recognize j as an increasing or decreasing function.

(%i1) assume(a > b);
(%o1) [a > b]
(%i2) is(f(a) > f(b));
(%o2) unknown
(%i3) declare(f, increasing);
(%o3) done
(%i4) is(f(a) > f(b));
(%o4) true

posfun [property]

Tells Maxima to recognize j as a positive function.

evenfun [property]

A function with this property is recognized as an even function. ƒ (−) will be sim-
plified to ƒ ().

54



oddfun [property]

A function with this property is recognized as an odd function. ƒ (−) will be simpli-
fied to −ƒ ().

outative [property]

If a function has this property and it is applied to an argument forming a product,
constant factors are pulled out on simplification. Constants in this sense are num-
bers, standard Maxima constants such as %e, %i or %pi, and variables that have
been declared constant.

(%i1) declare(f,outative)$
(%i2) f((r-2+%e^%i)*x);
( %o2) ƒ ((r + e − 2) )
(%i3) declare(r,constant)$
(%i4) f((r-2+%e^%i)*x);
( %o4) (r + e − 2) ƒ ()

The standard functions sum, integrate and limit are by default outative. However,
this property can be removed from them by the user.

additive [property]

If a function has this property and it is applied to an argument forming a sum, the
function is distributed over this sum, i.e. f(y+x) will simplify to f(y)+f(x).

linear [property]

Equivalent to declaring j both outative and additive.

multiplicative [property]

If a function has this property and it is applied to an argument forming a product,
the function is distributed over this product, i.e. f(y*x) will simplify to f(y)*f(x).

commutative [property]
symmetric [property]

These two properties are synonyms. If assigned to a function ƒ (, z, y), it will be
simplified to ƒ (, y, z).

antisymmetric [property]

If assigned to a function ƒ (, y, z), it will be simplified to −ƒ (, y, z). That is, it will
give (−1)n times the result given by symmetric or commutative, where n is the
number of interchanges of wo arguments necessary to convert it to that form.

lassociative [property]
rassociative [property]

A function with this property is recognized as being left-associative or right-associa-
tive.

55



11.3.1.4 Functions and system variables for properties

declare (1, p1, 2, p2, . . . , n, pn) [function]

Assigns property (or list of properties) pj to atom (or list of atoms) j, j = 1, . . . , n.
Atoms may be variables, functions, operators, etc. Arguments are not evaluated.
declare always returns done. To test whether an atom has a specific (user-declared
or user-defined) property, see featurep. To show all properties of an atom, see
properties. To show all atoms with a specific property, see propvars. For the use of
declare to create user-defined properties, see declare (p, feature).

(%i1) declare(a,outative,b,additive)$
(%i2) declare([r,s,t],real)$
(%i3) declare(c,[constant,complex])$

properties () [function]

Returns a list of all properties associated with atom a.

props [system variable]

This system variable contains a list of all atoms that have been assigned any user-
declared or user-defined property. See function propvars to show a sublist of props
containing only the atoms with a specific property.

propvars (p) [function]

Returns a sublist of those atoms on the system list props which have the property
indicated by p.

remove (1, p1, 2, p2, . . . , n, pn) [function]

Removes property (list of properties) pj from atom (list of atoms) j, j = 1, . . . , n.
remove (all, p) removes the property p from all atoms which have it.

The removed properties may be system-declared properties such as function, macro,
or mode_declare. Arguments are not evaluated. remove always returns done.

11.3.1.5 User-defined properties

The user may define new properties by declare (p, ƒetre) and assign them to
variables or functions with declare in the same way it is done for predefined, user-
declared properties. The user-defined properties are kept in the system list features
together with some (but not all) of the predefined, user-declared properties. The
predicate function featurep may be used to test a variable or function for having a
user-defined (or a predefined, user-declared) property.

declare (p, ƒetre) [function]

Declares p to be a new property. This can now be assigned to variables or func-
tions, tested for, view in lists and removed. User-written functions can then consider
this information.

(%i1) declare(new_property, feature);

56



(%o1) done
(%i2) declare(a, new_property);
(%o2) done
(%i3) featurep(a,new_property);
(%o3) true
(%i4) a:b;
(%o4) b
(%i5) featurep(a,new_property);
(%o5) false
(%i6) declare(b,new_property);
(%o6) done
(%i7) featurep(a,new_property);
(%o7) true
(%i8) c:new_property;
(%o8) new_property
(%i9) featurep(a,c);
(%o9) true

featurep (a, p) [predicate function]

Tries to determine whether atom a has property p. Note that featurep returns false
also in the case where it cannot determine whether atom a has property p or not.
Only user-declared and user-defined properties can be tested with featurep, but not
system-declared properties.

Note that featurep evaluates its arguments. Thus, if a has a value that is itself
a variable or function, and if p has a value that is itself a property, then it is the
variable or function which is the value of a that is tested for the property which is
the value of p.

features [system variable]

This list contains some (but not all) of the predefined, user-declared properties plus
all user-defined properties.

11.3.2 Implementation

11.4 Assumptions

11.4.1 User interface

11.4.1.1 Introduction

In Maxima, variables and user-defined functions can be associated with so-called
assumptions. Assumptions limit the range of values these variables or functions
are supposed to take. It is sometimes useful or even necessary to impose such re-
strictions in order to obtain usable results from symbolic computation. Assumptions
can be statements comprising the relational operators "<", "<=", equal, notequal,
">=" und ">" and some combinations of them with the boolean operators AND
and NOT (but not OR). Facts are declared by using function assume. See there for
details on the assumptions that can be made. Assumptions are remove with forget.

57



11.4.1.2 Functions and system variables for assumptions

assume (pred1, pred2, . . . , predn) [function]

Adds predicates pred1, pred2, . . . , predn to the current context. If a predicate is
redundant or inconsistent with the predicates in the current context, it is not added.
assume returns a list whose elements are the predicates added to the context, or
redundant, inconsistent or meaningless where applicable. assume evaluates its
arguments. The context accumulates predicates from each call to assume. assume
does not accept a Maxima list of predicates as does forget.

The predicates defined may only be expressions with the relational operators <,≤
(<=), equal (, b), notequal (, b), ≥ (>=) and >. Predicates cannot be literal
equality (=) or literal inequality (#) expressions, nor can they be predicate functions
such as integerp. assume does not allow predicates with complex numbers, either.

Boolean compound predicates of the form "pred1 AND . . . AND predn" are recog-
nized, but not "pred1 OR . . . OR predn". "NOT predk" is recognized, if predk is a
relational predicate. Expressions of the form "NOT (pred1 AND pred2)" and "NOT
(pred1 OR pred2)" are not recognized.

Maxima’s deduction mechanism is not very strong; there are many obvious conse-
quences which cannot be determined by is. This is a known weakness.

(%i1) assume (x > 0, y < -1, z >= 0);
(%o1) [x > 0, y < - 1, z >= 0]
(%i2) assume (a < b and b < c);
(%o2) [b > a, c > b]
(%i3) assume (2*b < 2*c);
(%o3) redundant
(%i4) assume (c < b);
(%o4) inconsistant
(%i5) facts ();
(%o5) [x > 0, - 1 > y, z >= 0, b > a, c > b]
(%i6) is (x > y);
(%o6) true
(%i7) is (y < -y);
(%o7) true
(%i8) is (sinh (b - a) > 0);
(%o8) true
(%i9) forget (b > a);
(%o9) [b > a]
(%i10) is (sinh (b - a) > 0);
(%o10) unknown
(%i11) is (b^2 < c^2);
(%o11) unknown

forget (pred1, pred2, . . . , predn) [function]
forget (L)

Removes predicates from the current context. Alternatively, the arguments can be
passed to forget as a Maxima list L. forget evaluates its arguments. In a very lim-
ited way, the predicates may be equivalent (not necessarily identical) expressions

58



to those previously assumed (e.g., b*2>4 eliminates b>2, but 2*a<2*b does not
eliminate a<b).

forget does not complain if a predicate to be forgotten does not exist. In any case,
pred1, pred2, . . . , predn or L is returned.

is (expr) [function]

ev(expr, pred), which can be written expr, pred at the interactive prompt, is equiv-
alent to is(expr).

is attempts to determine whether the predicate expr is provable from the facts in
the database. If the predicate is provably true or false, is returns this respectively.
Otherwise, the return value is governed by the global flag prederror. If it is not set
(default), it returns unknown. Otherwise, is returns an error message.

Note that is can evaluate any other predicate, too,independently of the assump-
tions in the database. Special attention has to be paid for tests of equality. is(a=b)
tests a and b to be literally equal, that is identical. is(equal(a,b)) tests for equiva-
lence, which does not necessarily imply literal identity. Different symbolic expres-
sions, that can be simplified by Maxima to the same (canonical) expression, are
considered equivalent.

(%i1) is (%pi > %e);
(%o1) true
(%i2) is(integerp(d));
(%o2) true
(%i3) c: (x - 1) * (x + 1) $
(%i4) d: x^2 - 1 $
(%i5) is(c = d);
(%o5) false
(%i6) is(equal(c,d));
(%o6) true

is attempts to derive predicates from the facts database. Note that assumptions
cannot be tested for literal equality or inequality.

(%i1) assume (a > b, b > c);
(%o1) [a > b, b > c]
(%i2) is (a + b > b + c);
(%o2) true
(%i3) is (equal (a, c));
(%o3) false
(%i4) is (2*a > 3*c);
(%o4) unknown
(%i5) assume (equal(d,5));
(%o5) [equal(d,5)]
(%i6) is (equal (d, 5));
(%o6) true
(%i7) is (d=5);
(%o7) false

If is can neither prove nor disprove a predicate by itself of from the facts database,
the global flag prederror governs the behavior of is.

59



(%i1) assume (a > b);
(%i1) [a > b]
(%i2) prederror: true$
(%i3) is (a > 0);
Maxima was unable to evaluate the predicate: a > 0
-- an error. Quitting. To debug this try debugmode(true);
(%i4) prederror: false$
(%i5) is (a > 0);
(%i1) unknown

11.4.2 Implementation

60



Chapter 12

Rules and patterns

tellsimp (pattern, replacement) [function]

Establishes a user-defined simplification rule that will be applied by the simplifier
automatically to any expression before applying the built-in simplification rules. See
tellsimpafter for user-defined rules that will be applied after the built-in simplifica-
tion rules.

pattern is an expression comprising pattern variables (declared by matchdeclare)
and other atoms and operators. replacement is substituted for an actual expression
which matches pattern. Pattern variables in replacement are assigned the values
matched in the actual expression.

pattern may be any nonatomic expression in which the main operator is not a pat-
tern variable. The newly defined simplification rule is associated with pattern’s
main operator, as it is done for the built-in simplification rules. tellsimp returns the
list of all simplification rules for the main operator of pattern, including the newly
established rule. (Thus, this function can also be used to see what are the built-in
simplification rules for a given main operator.)

The rule constructed by tellsimp is named after pattern’s main operator. Rules
for built-in operators and user-defined operators defined by infix, prefix, postfix,
matchfix and nofix have names which are Lisp identifiers. Rules for other functions
have names which are Maxima identifiers.

Rules defined with tellsimp are applied after evaluation of an expression (if not
suppressed through quotation or the flag noeval). They are applied in the order
they were defined, and before any built-in rules. Rules are applied bottom-up, that
is, applied first to subexpressions before applied to the whole expression. It may
be necessary to repeatedly simplify a result (e.g. via the quote-quote operator ” or
the flag infeval) to ensure that all rules are applied.

tellsimp does not evaluate its arguments.

tellsimpafter (pattern, replacement) [function]

Establishes a user-defined simplification rule that will be applied by the simplifier
automatically to any expression after having applied the built-in simplification rules.
See tellsimp for rules that will be applied before the built-in simplification rules.

61



Part IV

Basic Mathematical
Computation

62



Chapter 13

Root, exponential and
logarithmic functions

13.1 Roots

13.1.1 Vereinfachungen

radexpand Default: true [Optionsvariable]

13.2 Exponential function

exp (expr) [Funktion]

exp ist die natürliche Exponentialfunktion. Maxima vereinfacht exp(x)sofort zu e.

13.2.1 Vereinfachungen

radcan (expr) [Funktion]

Die Funktion radcan vereinfacht Ausdrücke, die die Exponentialfunktion, den Loga-
rithmus und Wurzeln enthalten.

(%i2) (%e^x-1)/(1+%e^(x/2));
radcan(%);

(%o1)
e − 1

e

2+1

(%o2) e

2−1

logsimp Standardwert: true [Optionsvariable]

Ist die Optionsvariable logsimp gesetzt, wird eine Exponentialform %e^(r*log(x))
≡ er n() zu x^r vereinfacht, falls r ∈ Z.

%e_to_numlog Standardwert: false [Optionsvariable]

Ist die Optionsvariable %e_to_numlog gesetzt, wird eine Exponentialform der Art
%e^(r*log(x)) ≡ er n() zu x^r vereinfacht, falls r ∈ Q.

63



demoivre Standardwert: false [Optionsvariable]

Ist die Optionsvariable demoivre gesetzt, wird eine Exponentialform %e^(a+%i*b)
≡ e+ b mit , b ∈ R, also mit komplexem Exponenten in Standardform, mit der
Euler’schen Formel zu %e^a*(cos(b)+%i*sin(b)) ≡ e (cosb +  sinb), also zu
einem äquivalenten Ausdruck mit Kreisfunktionen, umgeformt.

Die Optionsvariable exponentialize führt die gegenteilige Umformung durch. Es
können also nicht beide Optionsvariablen gleichzeitig gesetzt sein. Beide Umfor-
mungen können auch durch Funktionen gleichen Namens bewirkt werden, ohne
daß die Optionsvariablen gesetzt sind.

(%i4) %e^(a+ %i*b);
%e^(a+ %i*b), demoivre:true;
%, exponentialize:true;
radcan(%);

(%o1) e+ b

(%o2) e (cosb +  sinb)

(%o3) e
�

e b − e− b

2
+
e b + e− b

2

�

(%o4) e+ b

%emode Standardwert: true [Optionsvariable]

Ist die Optionsvariable %emode gesetzt, wird eine Exponentialform %e^(%i*%pi*x)
≡ e π  vereinfacht

- falls x eine ganze Zahl, ein ganzzahliges Vielfaches von 1/2, 1/3, 1/4 oder 1/6 oder
eine Gleitkommazahl ist, die einer ganzen oder halbganzzahligen Zahl entspricht:
nach der Euler’schen Formel zu einer komplexen Zahl in der Standardform cos(%pi*x)+%i*sin(%pi*x)
und dann wenn möglich weiter vereinfacht,

- für andere rationale x zu einer Exponentialform %e^(%i*%pi*y), mit y = − 2k für
ein k ∈ N, sodaß |y| < 1 ist.

Eine Exponentialform %e^(%i*%pi*(x+y)) ≡ e π (+y) wird zu e π e π y umgeformt
und dann der erste Faktor entsprechend vereinfacht, wenn y ein Polynom oder etwa
eine trigonometrische Funktion ist, nicht jedoch, wenn y eine rationale Funktion ist.

Wenn mit komplexen Zahlen in Polarkoordinatenform gerechnet werden soll, kann
es hilfreich sein, %emode auf den Wert false zu setzen.

%enumer Default: false [Option variable]

In an exponential form with floating point exponent, %e is always evaluated to
floating point, and therefore the whole form. If both %enumer and numer are true,
%e is evaluated to floating point in any expression.

64



Chapter 14

Limits

65



Chapter 15

Sums, products and series

15.1 Sums and products

15.1.1 Sums

15.1.1.1 Introduction

Sums can be created with function sum. They can be displayed in sigma notation,
simplified and evaluated. Sums can also be differentiated or integrated, and they
can be subject to limits.

15.1.1.2 Constructing, simplifying and evaluating sums

sum (expr, , 0, 1) [function]

Builds a summation of expr (evaluated) as the summation index i (not evaluated)
runs from 0 to 1 (both evaluated). Both a noun form and a sum that on simplifica-
tion and evaluation cannot be resolved are displayed in sigma notation.

(%i1) ’sum(1/k!,k,0,4);

(%o1)
4
∑

k=1

1

k!

(%i2) sum(1/k!,k,0,4);

(%o2)
65

24
(%i3) sum(1/k!,k,1,n);

(%o3)
n
∑

k=1

1

k!

(%i4) sum (a[i], i, 1, 5);
(%o4) 1 + 2 + 3 + 4 + 5
(%i5) sum (a(i), i, 1, 5);
(%o5) a(5) + a(4) + a(3) + a(2) + a(1)

Some basic rules are applied automatically to simplify sums. More rules are acti-
vated by setting flag simpsum.

simpsum default: false [option variable]

66



When simpsum is set, the result of a sum is simplified. This simplification may
sometimes be able to produce a closed form.

(%i1) sum (2^k + k^2, k, 0, n);

(%o1)
n
∑

k=0

�

2k + k2
�

(%i2) sum (2^k + k^2, k, 0, n), simpsum;

(%o2) 2n+1 +
2n3 + 3n2 + n

6
− 1

Package simplify_sum contains function simplify_sum which is even more powerful
in finding closed forms.

simplify_sum (expr) [function of simplify_sum]

<Text>

(%i1) load(simplify_sum);

( %o1) C: /maxima−5.40.0/. . / share /maxima/5.40.0/share / solve_rec / simplify_sum .mac

(%i2) simplify_sum(sum(2^k+k^2,k,0,n));

(%o2) 2n+1 +
2n3 + 3n2 + n

6
− 1

15.1.1.3 Differentiation and integration of sums

Sums can be differentiated and integrated.

(%i1) s:sum((x-x0)^k,k,1,n);

(%o1)
n
∑

k=1

( − 0)k

(%i2) ’diff(s,x) = diff(s,x);

(%o2)
d

d

n
∑

k=1

( − 0)k =
n
∑

k=1

k ( − 0)k−1

(%i3) ’integrate(s,x) = integrate(s,x);

(%o3)

∫ n
∑

k=1

( − 0)k d =
n
∑

k=1

( − 0)k+1

k + 1

15.1.1.4 Limits of sums

Sums can be subject to limits.

67



15.2 Series

Maxima contains functions powerseries and taylor for finding the series of differen-
tiable functions. It also has tools such as nusum capable of finding the closed form
of some series. Operations such as addition and multiplication work as usual on
series. This section presents the global variables which control the expansion.

In Maxima a series is represented by function sum with the upper bound set to inf
for infinity.

Series, including power series and truncated taylor expansions, can be differenti-
ated and integrated.

15.2.1 Power series

powerseries (expr, x, a) [function]

Returns the general form of the power series expansion for expr in the variable x
about the point a (which may be inf ). Each time Maxima returns a power series
expansion, it creates a new summation index, starting with 1, 2, . . .

If powerseries is unable to expand expr, taylor may be used to give the first several
terms of the series.

(%i1) powerseries(sin(x),x,0);

(%o1)
∞
∑

1=0

(−1)1 2 1+1

(2 1 + 1)!

When verbose is true, powerseries prints progress messages before returning the
result.

(%i2) verbose:true$ powerseries(log(sin(x)/x),x,0);
trigreduce: failed to expand.

log
�

sin ()



�

trigreduce: try again after applying rule:

log
�

sin ()



�

=
∫ d

d
sin ()


sin ()


d

powerseries: first simplification returned

−
∫ 

0

csc (g494) sin (g494) − g494 cos (g494) csc (g494)

g494
dg494

powerseries: first simplification returned

−
g494 cot (g494) − 1

g494

powerseries: attempt rational function expansion of

68



1

g494

(%o3)
∞
∑

2=1

(−1)2 22 2−1 bern (2 2) 2 2

2 (2 2)!

The advanced running index of the g-variable generated by Maxima indicates that
during computation the preceding ones have already been used internally.

15.2.2 Taylor and Laurent series expansion

taylor (expr, , , p 〈, ′symp 〉) | [function]

taylor (expr, [1, . . . , n],  | [1, . . . , n], p | [p1, . . . , pn]) |
taylor (expr, [[1, . . . , n],  | [1, . . . , n], p, ′symp]) |
taylor (expr, [[1, . . . , n], , p | [p1, . . . , pn], ′symp]) |

taylor (expr, [1, 1, p1], . . . , [n, n, pn]) |
taylor (expr, 1, 1, p1, . . . , n, n, pn)

This is the general form of function taylor. We will explain the single-variable and
the multi-variable forms separately and then the ’asymp option.

15.2.2.1 Single-variable form

taylor (expr, x, a, p) [function]

This basic form of taylor expands the expression expr in a truncated Taylor or Lau-
rent series in the variable x around the point a, containing terms through ( − )p.
Maxima precedes the output of a Taylor expansion by a tag /T/ directly after the
output tag. (In wxMaxima this is not done, if taylor appears on the right side of an
assignment.) This indicates that Maxima uses a special internal representation for
this type of data. (The CRE form is yet another special internal data format, tagged
with /R/ in Maxima output.)

(%i1) taylor(sqrt(x+1),x,0,3);

(%o3) /T/ 1 +


2
−
2

8
+
3

16
+ ...

We can evaluate both the original function and Taylor expansions of various orders
at a point near a with function at to see how the approximation proceeds.

(%i1) t1:taylor(sqrt(x+1),x,0,1);
t2:taylor(sqrt(x+1),x,0,2);
t3:taylor(sqrt(x+1),x,0,3);
t5:taylor(sqrt(x+1),x,0,5);
at([t1,t2,t3,t5,sqrt(x+1)],x=0.3);

(%o1) /T/ 1 +


2
+ ...

(%o2) /T/ 1 +


2
−
2

8
+ ...

69



(%o3) /T/ 1 +


2
−
2

8
+
3

16
+ ...

(%o4) /T/ 1 +


2
−
2

8
+
3

16
−
54

128
+
75

256
+ ...

(%o5) [1.15, 1.13875, 1.1404375, 1.1401875390625, 1.140175425099138]

15.2.2.2 Multi-variable form

taylor (expr, [1, . . . , n],  | [1, . . . , n], p | [p1, . . . , pn])

This basic multi-variable form of taylor expands expr in the variables 1, . . . , n
about the point (1, . . . , n), up to combined powers of p or up to combined powers
of mx(p) for  = 1, . . . , n. (Note that here p is not equal to the number of terms as
it is in the single-variable form.) If  is identical for all , it can be given as a single
simple variable instead of a list. Thus,  means the point (, . . . , )

︸ ︷︷ ︸

n tmes

.

taylor (expr, [1, 1, p1], . . . , [n, n, pn])

(The square brackets can be omitted.) This form is not only syntactically different
from the preceding one, but it also gives a different result, because expr is ex-
panded up to the power p for variable ,  = 1, . . . , n. Furthermore, terms are not
factored according to combined powers as in the preceding form, but according to
powers of the first, second, third, . . . variable.

(%i1) taylor(sin(x+y),[x,y],0,5);
expand(%);

(%o1) /T/ y +  −
3 + 3y 2 + 3y2 + y3

6
+ ...

(%o2) −
y3

6
−
y2

2
−
2y

2
+ y −

3

6
+ 

(%o3) taylor(sin(x+y),[x,0,2],[y,0,3]);
expand(%);

(%o3) /T/ y −
y3

6
+ ...+

�

1 −
y2

2
+ ...

�

 +

�

−
y

2
+
y3

12
+ ...

�

2 + ...

(%o4)
2 y3

12
−
y3

6
−
y2

2
−
2y

2
+ y + 

15.2.2.3 Option ’asymp

The option ’asymp can be applied to both the single- and the multi-variable form
of taylor. It returns an expansion of expr in negative powers of  − . The highest
order term is ( − )−n.

70



15.2.2.4 Option variables

taylordepth default value: 3 [option variable]

If in taylor (expr, x, a, p) the expression expr is of the form f(x)/g(x) and g(x) has no
terms up to degree p, taylor attempts to expand g(x) up to degree 2p. If there are
still no non-zero terms, taylor doubles the degree of the expansion of g(x) so long
as the degree of the expansion is less than or equal to 2tyordepthp.

71



Chapter 16

Differentiation

72



Chapter 17

Integration

73



Chapter 18

Solving Equations

74



Chapter 19

Differential Equations

75



Chapter 20

Polynomials

76



Chapter 21

Linear Algebra

21.1 Introduction

21.1.1 Operations in total or element by element

A clear conceptional distinction should be made between operations which are ap-
plied to a structure (vector, matrix, etc.) as a whole, and those which apply to all the
elements of a structure individually, joining the results to a structure of the same
kind to be returned. Examples of operations in total are scalar product or matrix
inversion, while examples of operations element by element are scalar multiplica-
tion of a vector or matrix, or integration of a vector or matrix, if their elements are
functions.

21.1.2 Dot operator: non-commutative product

a . b [infix operator]

The dot operator represents the general non-commutative product. It can be used
for the matrix product, section 21.3.8.1, or for the scalar or tensor product of vec-
tors, see section 21.2.7 and 21.2.8 respectively. But the dot operator is applicable
as a non-commutative product to any other kind of object, too.

In order to clearly distinguish the dot operator from the decimal point of a floating
point number, it is advisable to always leave a blank before and after the dot.

21.1.2.1 Exponentiation

a^^2 [infix operator]

The ^^ operator is the exponentiation of the non-commutative product, just as
^ is the exponentiation of the commutative product *. In 2D display mode, the
exponent is enclosed in angle brackets.

(%i1) a.a;
(%o1) <2>

(%i2) b*b;
(%o2) b2

77



21.1.2.2 Option variables for the dot product

The dot operator as Maxima’s general non-commutative product is controlled by a
large number of flags. They influence the rules which govern its simplification.

dot0nscsimp default: true [option variable]

When dot0nscsimp is true, a non-commutative product of zero and a nonscalar term
is simplified to a commutative product.

dot0simp default: true [option variable]

When dot0simp is true, a non-commutative product of zero and a scalar term is
simplified to a commutative product.

dot1simp default: true [option variable]

When dot1simp is true, a non-commutative product of one and another term is
simplified to a commutative product.

dotassoc default: true [option variable]

When dotassoc is true, an expression (A.B).C simplifies to A.(B.C).

dotconstrules default: true [option variable]

When dotconstrules is true, a non-commutative product of a constant and another
term is simplified to a commutative product. Turning on this flag effectively turns
on dot0simp, dot0nscsimp, and dot1simp as well.

dotdistrib default: true [option variable]

When dotdistrib is true, an expression A.(B+C) simplifies to A.B + A.C.

dotexptsimp default: true [option variable]

When dotexptsimp is true, an expression A.A simplifies to A<2>, which is A^^2.

dotident default: 1 [option variable]

dotident is the value returned by X<0>, which is X^^0.

dotscrules default: false [option variable]

When dotscrules is true, an expression A.SC or SC.A simplifies to SC*A, and A.(SC*B)
simplifies to SC*(A.B).

21.2 Vector

21.2.1 Representations and their internal data structure

Maxima does not have a specific data structure for vectors. A vector can be repre-
sented as a list or as a matrix of either one column or one row. The following shows
the internal data structure of these representations. Note that a matrix internally is
a list of MaximaL lists, each of them representing one row.

78



(%i1) u:[x,y,z]; /* MaximaL list. */
(%o1) [x, y, z]
(%i2) :lisp $u

((MLIST SIMP) x y z)
(%i3) v:covect(u); /* This creates a column vector. */

(%o3)













y

z











(%i4) :lisp $v
(($MATRIX SIMP) ((MLIST SIMP) x) ((MLIST SIMP) y) ((MLIST SIMP) z))

(%i5) w:transpose(u); /* This creates a row vector. */

(%o5)
�

 y z
�

(%i6) :lisp $w
(($MATRIX SIMP) ((MLIST SIMP) x y z))

21.2.2 Option variables for vectors

There are only a few specific option variables for vectors. Most option variables
relate to either matrices or lists. See section 21.3.3 for option variables applicable
to matrices, and section 7.5 for those on lists. Thus, behavior of vector operations
may depend on the vector representations, see section 21.2.1. Row and column
vectors are matrices.

vect_cross default: false [option variable]

When vect_cross is true, the vector product defined as the operator ~in share pack-
age vect may be differentiated as in diff(x~y,t). Note that loading vect will set
vect_cross to true.

21.2.3 Construct, transform and transpose a vector

A list can simply be entered by typing the elements inside of square brackets, sep-
arated by commas.

(%i1) v:[x,y,z];
(%o1) [x, y, z]

Special functions for creating lists (e.g. makelist and create_list) are described in
section 7.5 on lists.

Cvect (1, 2, . . . , n) [function of rs_algebra]
Rvect (1, 2, . . . , n) [function of rs_algebra]

Cvect returns a column vector which is a matrix of one column and n rows, contain-
ing the arguments. Rvect returns a row vector which is a matrix of one row and n
columns, containing the arguments.

(%i1) Cvect(x,y,z);

79



(%o1)













y

z











(%i2) Rvect(x,y,z);

(%o2)
�

 y z
�

MakeCvect (x,n) [function of rs_algebra]
MakeRvect (x,n) [function of rs_algebra]

These functions create the respective vectors with the components being the ele-
ments 1, . . . , n of an undeclared array named x. The first argument of this function
must not be bound and must not have any properties.

(%i1) x:MakeCvect(x,3);

(%o1)











1

2

3











(%i2) y:MakeRvect(y,3);

(%o2)
�

y1 y2 y3

�

System function genmatrix can be used to construct a column or row vector from
an undeclared array, too, but with symbolic elements having two indices instead of
one.

(%i1) x:genmatrix(x,3,1);

(%o1)











1,1

2,1

3,1











(%i2) x:genmatrix(x,1,3);

(%o2)
�

1,1 1,2 1,3

�

The following functions achieve transformation between different representations.

covect (L) [function of eigen]
columnvector (L) [function of eigen]

covect returns a column vector which is a matrix of one column and length (L) rows,
containing the elements of the list L. covect is a synonym for columnvector.

(%i1) covect([x,y,z]);

(%o1)













y

z











80



transpose (v) [function]

Transposes a list or a row vector into a column vector, and a column vector into a
row vector. For the more general transposition of a matrix, see transpose (M).

Transpose (v) [function of rs_algebra]

Transposes a list or a row vector into a column vector, and a column vector into a
list.

Vlist (v) [function of rs_algebra]

Transforms a vector of any kind into a list. If v is already a list, it will be returned.

Note that transpose(Vlist(v)) and transpose(transpose(Vlist(v))) will transform a
vector of any kind into a column vector and a row vector respectively.

21.2.4 Dimension of a vector

System function length(v) can be used to determine the dimension of a column
vector or list. We should not talk about the length of a vector here, because this
term is used for the norm of a vector.

Vdim(v) [function of rs_algebra]

Returns the dimension of a vector, independent of its representation.

21.2.5 Indexing: refering to the elements of a vector

While elements of a list are addressed simply by providing the number of the ele-
ment in square brackets, elements of a column vector or a row vector (as being ma-
trices) are addressed by two arguments in square brackets, separated by a comma,
where the first argument specifies the row and the second one the column.

21.2.6 Arithmetic operations and other MaximaL functions appli-
cable to vectors

listarith [option variable]

Scalar multiplication of a vector and arithmetic operations between vectors work
element by element, if the flag listarith is true, which is the default. They are only
possible between vectors of the same type, with the exception that lists and column
vectors can be combined. In this case, the result will be a column vector.

distribute_over [option variable]

Many other computational or simplifying/manipulating MaximaL functions can be
applied to vectors, which means that they operate element by element. The flags
doallmxops and distribute_over must be true (default). Examples are diff, factor,
expand.

81



21.2.7 Scalar product

The scalar product or dot product of two real valued vectors, which, in case of a list
representation of the vectors, is equal to sum (a[i]*b[i], i, 1, length(a)) can be built
with the dot operator, see section 21.3.8.1. The arguments need to have the same
dimension, but can be of any representation, except for the combination c.r, where
c is a column vector and r is a row vector or a list. This combination, instead, will
return the tensor product of two vectors, see section 21.2.8. Hence, this operator
is non-commutative with respect to the combination of vector representations. For
a commutative way of computing the scalar product see the operator SP.

(%i1) powerdisp:true$
(%i2) v:MakeCvect(v,3)$ w:MakeCvect(w,3)$
(%i3) v . w;
(%o3) 11 + 22 + 33

The dot operator, more generally applied to matrices, computes the non-commutative
matrix product. It is controlled by a number of flags which are described in section
21.1.2.

v SP w [infix operator of rs_algebra]

The infix operator SP computes the scalar product of two real valued vectors of
equal dimension, independently of their representations. Hence, it is a commuta-
tive version (with respect to the combination of vector representations) of the dot
operator. Internally, both vectors are transformed to column vectors first, then the
dot operator is employed. By this procedure all flags which control the dot operator
stay valid.

(%i1) v:MakeCvect(v,3)$ w:MakeRvect(w,3)$
(%i2) c SP r;
(%o2) 11 + 22 + 33

21.2.8 Tensor product

The non-commutative tensor product ⊗ can be computed with the dot operator,
see section 21.2.7, if the first argument is a column vector of dimension m and the
second argument is either a row vector or a list of dimension n. The arguments
need not have the same dimension. The result will be an m × n matrix. For a
description of the flags that control the dot operator, see section 21.1.2. For a way
to compute the tensor product independently of the vector representations see the
operator TP.

(%i1) v:MakeCvect(v,3)$ w:MakeRvect(w,3)$
(%i2) v . w;

(%o2)











11 22 13

21 22 23

31 32 33











v TP w [infix operator of rs_algebra]

82



The infix operator TP computes the tensor product of two vectors of any represen-
tation. The arguments need not have the same dimension. TP returns an m × n
matrix. Internally, the first argument is transformed to a column vectors, the sec-
ond one to a row vector, then the dot operator is employed. By this procedure all
flags which control the dot operator stay valid.

(%i1) v:MakeCvect(v,3)$ w:MakeCvect(w,3)$
(%i2) v TP w;

(%o2)











11 22 13

21 22 23

31 32 33











21.2.9 Vector norm and normalization

Vnorm(v) [function of rs_algebra]

Computes the Euclidean norm (2-norm) of vector v according to the formula
p
 · .

(%i1) v:MakeCvect(v,3)$
(%i2) Vnorm(v);

(%o2)
r

21 + 
2
2 + 

2
3

Normalize (v 〈,"r" 〉) [function of rs_algebra]

This function normalizes a vector v of any representation. It can also be used to
normalize the columns or rows of a matrix v. This is useful for matrices which
represent a group of column or row vectors, e.g. as being the basis of a vector
space. In case a matrix shall be normalized row-wise, a second argument "r" has to
be passed (in double-quotes).

(%i1) X:[1,2,3] TP [1,2,3];

(%o1)











1 2 3

2 4 6

3 6 9











(%i2) Normalize(X);

(%o2)











1p
14

1p
14

1p
14

2p
14

2p
14

2p
14

3p
14

3p
14

3p
14











(%i3) Normalize(X, "r");

(%o3)











1p
14

2p
14

3p
14

1p
14

2p
14

3p
14

1p
14

2p
14

3p
14











83



21.2.10 Vector equations

ExtractCequations (arg) [function of rs_algebra]

Extracts the component equations from a vector equation arg. The vectors on the
right and on the left side of the equation may be of any, but must be of identical
representation, with the exception that a combination of lists and column vectors
is possible, too. After the simplfications done at evaluation time of arg, this vector
equation has to be condensed to only one vector on each side. Use all kinds of
simplification functions first, if this is not guaranteed. ExtractCequations returns
a list of Vdim(arg) component equations which e.g. can be forwarded to function
solve.

(%i1) u:MakeCvect(u,3)$ v:MakeCvect(v,3)$
(%i2) w:makelist(w[i],i,1,3)$
(%i3) ExtractCequations(u+v=w);

(%o3) [1 + 1 =1, 2 + 2 =2, 3 + 3 =3]

21.2.11 Vector product

Standard Maxima has no operator to compute the vector or cross product between
two 3-dimensional vectors.

v VP w [infix operator of rs_algebra]

The infix operator VP computes the vector product of two vectors of any represen-
tation, but dimension three, returning a column vector.

(%i1) v:MakeCvect(v,3)$ w:MakeCvect(w,3)$
(%i3) v VP w;

(%o3)











23 − 23

13 − 13

12 − 12











21.2.12 Mixed product and double vector product

These products, of course, can be computed by combining the operations of scalar
and vector product. The mixed product is

(%i1) v:MakeCvect(v,3)$ w:MakeCvect(w,3)$ u:MakeCvect(u,3)$
(%i4) expand(u SP (v VP w));

(%o4) 123 − 123 − 123 + 123 + 123 − 123

(%i5) expand((u VP v) SP w));

(%o5) 123 − 123 − 123 + 123 + 123 − 123

And for the double vector product we get

(%i7) expand(u VP (v VP w));

(%o7)











1 33 − 1 3 3 + 1 22 − 1 2 2

2 33 − 2 3 3 − 1 12 + 11 2

−2 23 − 1 13 + 22 3 + 11 3











84



21.3 Matrix

21.3.1 Internal data structure

A matrix internally is a list of MaximaL lists, each of them representing one row, see
function matrix.

21.3.1.1 matrixp

matrixp (expr) [function]

Returns true if expr is a matrix, otherwise false.

21.3.2 Indexing: Refering to the elements of a matrix

Square brackets are used for indexing matrices, that is to refer to its elements.
Indices start with 1. The first argument ist the row, the second the column. See the
example below.

21.3.3 Option variables for matrices

A number of option variables enable, disable and control different kinds of matrix
operations. See section 7.5 for option variables on lists, and section 21.2.2 for those
on vectors.

doallmxops default: true [option variable]

When doallmxops is true, all operations relating to matrices are carried out. When
it is false, the settings of the individual dot switches govern which operations are
performed.

domxmxops default: true [option variable]

When domxmxops is true, all matrix-matrix or matrix-list operations are carried
out, but not scalar-matrix operations; if this switch is false, such operations are not
carried out.

domxnctimes default: false [option variable]

When domxnctimes is true, non-commutative products of matrices are carried out.

doscmxops default: false [option variable]

When doscmxops is true, scalar-matrix operations are carried out.

doscmxplus default: false [option variable]

When doscmxplus is true, scalar-matrix operations yield a matrix result. This switch
is not subsumed under doallmxops.

matrix_element_add default: + [option variable]

matrix_element_mult default: * [option variable]

matrix_element_transpose default: false [option variable]

85



ratmx default: false [option variable]

When ratmx is false, matrix addition, subtraction, and multiplication as well as
function determinant are performed in the representation of the matrix elements
and cause the result of matrix inversion to be returned in general representation.

When ratmx is true, the operations mentioned above are performed in CRE form
and the result of matrix inverse is returned in CRE form. Note that this may cause
the elements to be expanded (depending on the setting of ratfac) which might not
always be desirable.

scalarmatrixp default: true [option variable]

When scalarmatrixp is true, then whenever a 1 x 1 matrix is produced as a result
of computing the dot product of matrices, it is simplified to a scalar, being the
sole element of the matrix. When scalarmatrixp is all, then all 1 x 1 matrices
are simplified to scalars. When scalarmatrixp is false, 1 x 1 matrices are never
simplified to scalars.

Known bug: The value returned by computing the dot product v.v of a column or
row vector or a list v with v^^2 is a 1 x 1 matrix, even if scalarmatrixp is true. In
case of v being a list, it is even a 1 x 1 matrix when scalarmatrixp is all.

21.3.4 Construct a matrix

There are several ways to construct a matrix.

21.3.4.1 Enter a matrix

matrix (Lr1 , . . . , Lrm) [function]

This function can be used to enter an m× n matrix. Each row is given as a MaximaL
list and must contain the same number n of elements. In wxMaxima the menu
Algebra / Enter matrix can be used to facilitate the input.

(%i1) M:matrix([1,2,3],[4,5,6],[7,8,9]);

(%o1)











1 2 3

4 5 6

7 8 9











(%i2) M[2,1];
(%o2) 4

21.3.4.2 Append colums, rows or whole matrices

A matrix can be constructed by starting with a column or row vector and appending
columns at the right or rows at the bottom one by one. Columns or rows can of
course be append to any existing matrix, too. The following functions can even be
used to apend whole matrices at the right or bottom of an existing matrix.

addcol (M,Lc1 |M1, . . . , Lck |Mk) [function]
addrow (M,Lr1 |M1, . . . , Lrk |Mk) [function]

86



addcol (M,Lc1 , . . . , Lck) appends at the right of the m × n matrix M the k columns
containing the elements from lists Lc ,  = 1, . . . , k, each having m elements.

addrow (M,Lr1 , . . . , Lrk) appends at the bottom of the m × n matrix M the k rows
containing the elements from lists Lr ,  = 1, . . . , k, each having n elements.

addcol (M,M1, . . . ,Mk) / addcol (M,M1, . . . ,Mk) append at the right / bottom of the
m × n matrix M the k matrices M,  = 1, . . . , k, each having m rows / n columns.

Appending matrices and columns with addcol can even be arbitrarily combined.
The same holds for addrow.

(%i1) M:Cvect(a,b,c);

(%o1)













b

c











(%i2) N:addcol(M,[d,e,f]);

(%o2)











 d

b e

c ƒ











(%i3) addcol(N,N);

(%o3)











 d  d

b e b e

c ƒ c ƒ











(%i4) addcol(N,[1,2,3],N,[4,5,6]);

(%o4)











 d 1  d 4

b e 2 b e 5

c ƒ 3 c ƒ 6











21.3.4.3 Extract a submatrix, column or row

submatrix (〈r1, . . . , rk, 〉M〈, c1, . . . , c〉) [function]

Returns a new matrix composed of the m × n matrix M, with rows r1, . . . , rk and/or
columns c1, . . . , c deleted, row indices being 1 ≤ r ≤m and column indices 1 ≤ cj ≤
n. The respective indices don’t have to be in numerical order.

row (M,i) [function]

Returns the i-th row of the matrix M. The return value is a row vector (which is a
matrix).

col (M,j) [function]

Returns the j-th column of the matrix M. The return value is a column vector (which
is a matrix).

87



21.3.4.4 Build special matrices

21.3.4.4.1 Identity matrix

ident (n) [function]

Returns an n × n identity matrix.

21.3.4.4.2 Zero matrix

zeromatrix (m,n) [function]

Returns an m × n zero matrix.

21.3.4.4.3 Diagonal matrix

diagmatrix (n,x) [function]

Returns an n× n diagonal matrix, each element of the diagonal containing x, which
can be any kind of expression. If x is a matrix, it is not copied; all diagonal elements
refer to the same instance of x.

21.3.4.5 Genmatrix

genmatrix (, 2, j2〈, 1〈, j1〉〉) [function]

This function creates a matrix










1 j1 · · · 1 j2
...

...

2 j1 · · · 2 j2











from argument , which must be either a declared array (created by array, but not
by make_array), an undeclared array, an array function or a lambda function of
two arguments, taking [ 1, j1] as the first and [ 2, j2] as the last element of the
matrix. If j1 is omitted, it is assumed to be equal to 1. If both j1 and 1 are omitted,
both are assumed to be equal to 1.

An example with an undeclared array is given in section 21.2.3.

21.3.5 Functions applied element by element

21.3.5.1 Arithmetic operations and other MaximaL functions applicable
to matrices

The operations + (addition), - (subtraction), * (multiplication), and / (division), are
carried out element by element when the operands are two matrices, a scalar and
a matrix, or a matrix and a scalar.

The operation ˆ (exponentiation, equivalently **) is carried out element by element,
if the operands are a scalar and a matrix or vice versa, but not if the operands are
two matrices.

88



Differentiation and integration of a matrix is also performed element by element,
each element being considered as a function.

21.3.5.2 Mapping arbitrary functions and operators

matrixmap (ƒ ,M1, . . . ,Mn) [function]

Applies an arbitrary function or operator f of n arguments to matrices M1, . . . ,Mn el-
ement by element, returning a matrix with element [i,j] equal to ƒ (M1[ , j], . . . ,M1[ , j]).
The number of matrices has to correspond to the number of arguments required by
f. matrixmap is a version of function map being applicable to matrices (which map
is not). See there for more explanations and examples.

In the following example, f is unbound at first and as such can have an arbitrary
number of arguments, always returning a noun expression.

(%i1) M:matrix([1,2,3],[4,5,6],[7,8,9])$ matrixmap(f,M);

(%o2)











ƒ (1) ƒ (2) ƒ (3)

ƒ (4) ƒ (5) ƒ (6)

ƒ (7) ƒ (8) ƒ (9)











(%i3) N:matrix([a,b,c],[d,e,f],[g,h,i])$ matrixmap(f,M,N);

(%o4)











ƒ (1, ) ƒ (2, b) ƒ (3, c)

ƒ (4, d) ƒ (5, e) ƒ (6, ƒ )

ƒ (7, g) ƒ (8, h) ƒ (9, )











(%i5) f(x):=2*x$ matrixmap(f,M);

(%o6)











2 4 6

8 10 12

14 16 18











(%i7) matrixmap("=",N,M);

(%o7)











 = 1 b = 2 c = 3

d = 4 e = 5 ƒ = 6

g = 7 h = 8  = 9











fullmapl (ƒ ,M1, . . . ,Mn) [function]

fullmapl is a version of function fullmap being applicable to lists and matrices. See
section 7.5 for explanations and examples.

21.3.6 Transposition

transpose (M) [function]

Transposes matrix M. transpose can also be used to transform a list into a column
vector. For the general transposition of vectors, see transpose (v) and Transpose.

89



21.3.7 Inversion

Matrix inversion can be carried out with function invert, or directly by matrix expo-
nentiation with -1. Both methods are equivalent.

invert (M) [function]

invert(M) is equivalent to M^^−1 , that is M<−1>. The inverse of the matrix M is
returned. The inverse is computed via the LU decomposition.

When ratmx is true, elements of M are converted to canonical rational expressions
(CRE), and the elements of the return value are also CRE. When ratmx is false,
elements of M are not converted to a common representation. In particular, float
and bigfloat elements are not converted to rationals.

When detout is true, the determinant is factored out of the inverse. The global flags
doallmxops and doscmxops must be false to prevent the determinant from being
absorbed into the inverse. xthru can multiply the determinant into the inverse.

invert does not apply any simplifications to the elements of the inverse apart from
the default arithmetic simplifications. ratsimp and expand can apply additional
simplifications. In particular, when M has polynomial elements, expand(invert(M))
might be preferable.

21.3.8 Product

21.3.8.1 Non-commutative matrix product

The the non-commutative matrix product can be built with the dot operator, see
section 21.1.2. The number of rows of argument a has to equal the number of
columns of b. The dot operator is controlled by a number of flags which are de-
scribed in section 21.1.2.

21.3.9 Rank

rank (M) [function]

Computes the rank of the matrix M. That is, the order of the largest non-singular
subdeterminant of M.

rank may return the wrong answer, if it cannot determine that a matrix element
equivalent to zero is indeed so.

21.4 Determinant

21.4.1 Option variables for determinant

Some option variables for matrices, see section 21.3.3, apply to determinant, too.

sparse default: false [option variable]

When sparse and ratmx are true, determinant will use special routines for comput-
ing sparse determinants.

90



Chapter 22

Analytic geometry

22.1 Representation and transformation of angles

22.1.1 Degrees � radiant

Rad2deg(angle) [function of rs_angles]
Rad2degf(angle) [function of rs_angles]
Deg2rad(angle) [function of rs_angles]
Deg2radf(angle) [function of rs_angles]

These functions transform angle from radiant to degrees and vice versa. While
functions not ending with an f return ratios (and multiples of π) wherever possi-
ble, the functions ending with an f return floats rounded to 3 (Rad2degf) resp. 5
(Deg2Radf) digits after the dot.

22.1.2 Degrees decimal � min/sec

Degdec2min(angle,n) [function of rs_angles]
Degmin2dec(angle,n) [function of rs_angles]
Concminsec(angle) [function of rs_angles]

Degdec2min(angle,n) converts angle given in degrees decimally into a list of 3
elements containing degrees, minutes and seconds. Seconds are rounded to a
maximum of n ≥ 0 digits after the dot.

Degmin2dec(angle,n) converts angle given in a list of 3 elements containing de-
grees, minutes and seconds into degrees decimally, rounded to a maximum of
n ≥ 0 digits after the dot.

Concminsec(angle) converts angle given as a list with 3 elements containing de-
gree, min, sec into a string with the elements separated by "°", "’" and "”" respec-
tively.

22.1.3 (−π, π)� (0,2π)

The range of angles in radiant for a full circle can be defined to be either (−π, π] or
[0,2π). The following functions transform an angle from one of these ranges to the
other.

91



Pos2pi(angle) [function of rs_angles]
Negpospi(angle) [function of rs_angles]

Pos2pi transforms angle, given in radiant, from range (−π, π] to range [0,2π). Neg-
pospi transforms angle, given in radiant, from range [0,2π) to range (−π, π].

Angles given in degrees can be likewise transformed between the two correspond-
ing ranges with Rad2deg(Pos2pi(Deg2rad(angle))) or Rad2deg(Negpospi(Deg2rad
(angle))).

92



Chapter 23

Coordinate systems

23.1 Cartesian coordinates

23.2 Polar coordinates

23.3 Cylindrical coordinates

23.4 Spherical coordinates

23.5 General coordinate transformations

93



Part V

Advanced Mathematical
Computation

94



Chapter 24

Tensors

95



Chapter 25

Numerical Computation

96



Part VI

Maxima Programming

97



Chapter 26

Compound statements

26.1 Sequential and block

26.1.1 Sequential

(epr1, . . . , eprn) [matchfix operator]

A number of statements can be enclosed in parentheses and separated by commas.
Such a list of sub-statements is the most simple form of a compound statement We
call it a sequential. Maxima evaluates the sub-statements in sequence and only
returns the value of the last one.

26.1.2 Block

block ([1, . . . , n], epr1, . . . , eprm) [function]
block ([1, . . . , n], local (1, . . . , n), epr1, . . . , eprm)

A block allows to make variables 1, . . . , m local to the sequence of sub-statements
epr1, . . . , eprm. If these variables (symbols) are already bound, block saves their
current values upon entry to the block and then unbinds the symbols so that they
evaluate to themselves. The local variables may then be bound to arbitrary values
within the block. When the block is exited, the saved values are restored, and the
values assigned within the block are lost.

Note that the block declaration of the first line will make variables 1, . . . , m local
only with respect to their values. However, in Maxima, just like in Lisp, a large num-
ber of qualities can be attributed to symbols by means of properties. Properties of
1, . . . , m are not made local by a plain block declaration! They stay global, which
means that properties already assigned to these symbols on entry to the block will
remain inside of the block, and properties assigned to these symbols inside of the
block will not be removed on exiting the block. In order to make symbols 1, . . . , m
local to the block with respect to their properties, too, they have to be declared
with function local inside of the block. For example, some declarations of a symbol
are implemented as properties of that symbol, including :=, array, dependencies,
atvalue, matchdeclare, atomgrad, constant, nonscalar, assume. local saves and
removes such declarations, if they exist, and makes declarations done within the
block effective only inside of the block; otherwise such declarations done within a
block are actually global declarations.

98



A block may appear within another block. Local variables are established each
time a new block is evaluated. Local variables appear to be global to any enclosed
blocks. If a variable is non-local in a block, its value is the value most recently
assigned by an enclosing block, if any, otherwise, it is the value of the variable in
the global environment. This policy may coincide with the usual understanding of
dynamic scope.

The value of the block is the value of its last sub-statement, or the value of the
argument to the function return, which may be used to exit explicitly from the
block at any point.

The function go may be used to transfer control to the statement of the block that
is tagged with the argument to go. To tag a statement, precede it by an atomic
argument as another sub-statement in the block. For example:
block ([x], x:1, loop, x: x+1, ..., go (loop), ...).
The argument to go must be the name of a tag appearing within the block; one
cannot use go to transfer to a tag in a block other than the one containing the go.
Using labels and go to transfer control, however, is unfashionable and not recom-
mended.

local (1, . . . , n) [function]

The declaration local (1, . . . , m) within a block saves the properties associated
with the symbols 1, . . . , m, removes them from the symbols, and restores any
saved properties on exit from the block. This statement should best be placed
directly after the list of the local variables at the beginning of the block.

26.2 Function

26.2.1 Function definition

:= [infix operator]

f(1, . . . , n) := expr
":="

�

ƒ (1, . . . , n), epr
�

define
�

ƒ (1, . . . , n), epr
�

[function]

A function can be defined either with the function definition operator := or with
function define. Both ways are similar, but not identical. The similarity can be seen
more clearly if the := operator is written as an operator function. The difference be-
tween := and define is that := never evaluates the parameters or the function body
unless explicitly forced by quote-quote ’ ’, whereas define always evaluates the pa-
rameters and the function body unless explicitly prevented by quote. The function
name is not evaluated in either case. If the function name is to be evaluated, one
of the following expressions can be used

define (funmake (ƒ , [1, . . . , n]), expr)
define (funmake (ƒ [1, . . . , n], [y1, . . . , yn]), expr)
define (arraymake (ƒ , [1, . . . , n]), expr)
define (ev (epr1), epr2).

99



The first expression using funmake returns an ordinary function with parameters
in parentheses, see section 26.2.2. The expression using arraymake returns an
array function with parameters in square brackets, see section 26.2.3. The second
expression using funmake returns a subscripted function, see section 26.2.4. The
expression with ev can be used in any case.

(%i1) f:g $ u:x $
(%i3) define (funmake (f, [u]), cos(u) + 1);
(%o3) g(x) := cos(x) + 1
(%i4) define (arraymake (f, [u]), cos(u) + 1);
(%o4) g := cos() + 1
(%i5) define (f(x,y), g (y,x));
(%o5) f(x,y) := g(y,x)
(%i6) define (ev(f(x,y)), sin(x) - cos(y));
(%o6) g(y,x) := sin(x) - cos(y)

26.2.2 Ordinary function

f(1, . . . , n) := expr
f(1, . . . , n) := block ([1, . . . , p], epr1, . . . , eprm)
f(1, . . . , n) := block ([1, . . . , p], local (1, . . . , n, 1, . . . , p), epr1, . . . , eprm)

The first line defines a function named f with parameters 1, . . . , n and function
body expr.

An ordinary function is a function which encloses its parameters (at function defi-
nition) and arguments (at function call) with parentheses (). The function body of
an ordinary function is evaluated every time the function is called. Before the func-
tion body is evaluated, the function call’s arguments (after having been evaluated
themselves) are assigned to the function’s parameters.

Usually the function body will be a block, allowing for the declaration of local vari-
ables, as demonstrated in the second and third line. Inside of a function body, local
can - and should - be applied both to local variables and function parameters. If
they are not declared local, parameters, just like local variables, are local only with
respect to their values, but not with respect to their properties!

(%i1) properties(x);
(%o1) []
(%i2) f(x):=block([a], local(a), a:1, declare (x,odd), x:a)$
(%i3) properties(x);
(%o3) []
(%i4) f(3);
(%o4) 1
(%i5) properties(x);
(%o5) [database info, kind(x,odd)]
(%i6) kill(all)$
(%i7) f(x):=block([a], local(x,a), a:1, declare (x,odd), x:a)$
(%i8) f(3);
(%o8) 1
(%i9) properties(x);
(%o9) []

100



If some parameter k is a quoted symbol (for define: after evaluation), the function
defined does not evaluate the corresponding argument when it is called. Otherwise
all arguments are evaluated.

(%i1) f(x):=x^2;
(%o1) ƒ () := 2

(%i2) a:b$ f(a);
(%o2) b2

(%i3) f(’x):=x^2;
(%o3) ƒ (′) := 2

(%i4) a:b$ f(a);
(%o4) 2

(%i5) define(f(’x),x^2);
(%o5) ƒ () := 2

(%i6) a:b$ f(a);
(%o6) b2

(%i7) define(f(’(’x)),x^2);
(%o7) ƒ (′) := 2

(%i8) a:b$ f(a);
(%o8) 2

f(1, . . . , n−1, [L]) := expr

If the last or only parameter n is a list of one element, the function defined accepts
a variable number of arguments. Arguments are assigned one-to-one to parame-
ters 1, . . . , (n−1), and any further arguments, if present, are assigned to n as a
list. In this case, arguments 1, . . . , (n−1) are called required arguments, while all
further arguments, if present, are called optional arguments.

All functions defined appear in the same global namespace. Thus, defining a func-
tion f within another function g does not automatically limit the scope of f to g.
However, an additional statement local (f) inside of the block of g makes the defi-
nition of function f effective only within the block of function g.

functions default: [] [system variable]

functions is the list of ordinary Maxima functions having been defined by the user
in the current session.

26.2.3 Array function, memoizing function

f[1, . . . , n] := expr

define (f[1, . . . , n], expr)
define (funmake (f, [1, . . . , n]), expr)
define (arraymake (f, [1, . . . , n]), expr)
define (ev (expr_1), expr_2)

f[1, . . . , n] := expr defines an array function. Its function body is evaluated just
once for each distinct value of its arguments, and that value is returned, without
evaluating the function body, whenever the arguments have those values again.
Such a function is known as a memoizing function.

101



26.2.4 Subscripted function

f[1, . . . , n](y1, . . . , ym) := expr

define (f[1, . . . , n](y1, . . . , yn), expr)

An subscripted function f[1, . . . , n](y1, . . . , ym) := expr is a special case of an
array function f[1, . . . , n] which returns a lambda expression with parameters
y1, . . . , ym. The function body of the subscripted function is evaluated only once for
each distinct value of its parameters (subscripts) 1, . . . , n, and the correspond-
ing lambda expression is that value returned. If the subscripted function is called
not only with subscripts 1, . . . , n in square brackets, but also with arguments
y1, . . . , yn in parentheses, the corresponding lambda expression is evaluated and
only its result is returned.

Note that a normal array function, see section 26.2.3, is also represented by Maxima
with its parameters as subscripts, because they appear in square brackets. This is
somewhat misleading, since they don’t constitute real indices, but plain variables.
Therefore we don’t call such a function a subscripted function.

In the following example, the function body is a simple sequential compound state-
ment, a list of expressions in parentheses, which are evaluated consecutively. Only
the value of the last of them is returned.

(%i1) f[n](x):= (print("Evaluating f for n=", n), diff (sin(x)^2, x, n));

(%o1) ƒn() :=
�

print ("Evaluating f for n=", n),
dn

dn
sin2()

�

(%i2) f[1];
Evaluating f for n=1
(%o2) lambda([x], 2 cos(x) sin(x))
(%i3) f[1];
(%o3) lambda([x], 2 cos(x) sin(x))
(%i3) f[1](%pi/3);

(%o3)

p
3

2
(%i4) f[2];
Evaluating f for n=2

(%o4) lambda ([],2cos2() − 2sin2())
(%i5) f[2](%pi/3);
(%o5) -1
(%i6) f[3](%pi/3);
Evaluating f for n=3

(%o3) −2
p

3

26.2.5 Function call

funmake (f,[1, . . . , n]) [function]

funmake (f,[1, . . . , n]) evaluates its arguments and returns an expression f(1, . . . , n)
which is a function call of function f with arguments 1, . . . , n in parentheses. The
return value is simplified, but not evaluated. So f is not called, even if it exists.
To evaluate the return value, either ev() or quote-quote can be used, but only in a
second statement.

102



f can be an ordinary function, a subscripted function or a macro function. In case f is
an already defined array function, funmake will nevertheless return an expression
with the arguments in parentheses. If an array function call with the arguments in
square brackets is to be returned, use arraymake instead.

(%i1) f(x,y):= y^2-x^2;

(%o1) ƒ (, y) := y2 − 2

(%i2) funmake(f,[a+1,b+1]);
(%o2) f(a+1,b+1)
(%i3) ev(%);

(%o3) (b + 1)2 − ( + 1)2

(%i4) g[a](x) := (x - 1)^a;
(%o4) g() := ( − 1)

(%i5) funmake (g[n],[b]);

(%o5) lambda
�

[], ( − 1)n
�

(b)
(%i6) ev(%);
(%o6) (b − 1)n

(%i7) funmake (’g[n],[b]);
(%o7) gn(b)
(%i8) ev(%);
(%o8) (b − 1)n

(%i9) h(x) ::= (x - 1)/2;

(%o9) h() ::=
 − 1

2

(%i10) funmake(h,[u]);
(%o10) h(u)
(%i11) ev(%);

(%o11)
 − 1

2

funmake can be used in a function definition with define to evaluate the function
name.

26.3 Operator (function)

Infix operator function definition, example tensor product:
infix("tp");
a tp b := transpose(vlist(a)).transpose(transpose(vlist(b)));
This can alternatively be defined by
"TP"(a,b) := transpose(vlist(a)).transpose(transpose(vlist(b)));

103



26.4 Lambda function, anonymous function

lambda ([1, . . . , m], epr1, . . . , eprn) [function]

This is called a lambda function or anonymous function. It defines and returns what
is called a lambda expression, but does not evaluate it.

(%i1) lambda([x],x+1);
(%o1) lambda([x],x+1)

A lambda expression can be evaluated like an ordinary function by calling it with
arguments in parentheses corresponding to the lambda function’s parameters.

(%i1) lambda([x],x+1)(3);
(%o1) 4

When a lambda expression is evaluated, unbound local variables 1, . . . , m are cre-
ated. Then the arguments (after having been evaluated themselves) are assigned
to the parameters. epr1, . . . , eprn are evaluated in turn, and the value of eprn
is returned.

lambda ([1, . . . , m, [L]], epr1, . . . , eprn)

If the last or only parameter n is a list of one element, the function defined accepts
a variable number of arguments. Arguments are assigned one-to-one to parame-
ters 1, . . . , (n−1), and any further arguments, if present, are assigned to n as a
list.

lambda may appear within a block or another lambda; local variables are estab-
lished each time another block or lambda expression is evaluated. Local variables
appear to be global to any enclosed block or lambda. If a variable is not local, its
value is the value most recently assigned in an enclosing block or lambda expres-
sion, if any, otherwise, it is the value of the variable in the global environment. This
policy may coincide with the usual understanding of dynamic scope.

A lambda function definition does not evaluate any of its arguments, neither the
expressions nor the parameters given as a list in square brackets. Evaluation at
definition time can, however, be forced individually with quote-quote. In this re-
spect the lambda function definition behaves like the definition of an ordinary func-
tion with :=. The difference is, that a lambda function has no individual name; the
lambda expression itself substitutes the function name.

(%i1) x:a$
(%i2) lambda([x],x+1);
(%o2) lambda([x],x+1)
(%i3) lambda([x],x+1)(3);
(%o3) 4

(%i1) x:a$
(%i2) lambda([’’x],x+1);
(%o2) lambda([a],x+1)
(%i3) lambda([’’x],x+1)(3);
(%o3) a+1

104



(%i1) x:a$
(%i2) lambda([’’x],’’x+1);
(%o2) lambda([a],a+1)
(%i3) lambda([’’x],’’x+1)(3);
(%o3) 4

A lambda expression can be assigned to a variable v. Evaluating this variable with
arguments in parentheses corresponding to the parameters of the lambda expres-
sion looks like a function call of an ordinary function named v. However, properties
shows that v is not a function.

(%i1) v:lambda([x],x+1);
(%o1) lambda([x],x+1)
(%i2) v(3);
(%o2) 4
(%i3) properties(v);
(%o3) [value]
(%i4) u(x):=x+1;
(%o4) u(x):=x+1
(%i5) u(3);
(%o5) 4
(%i6) properties(u);
(%o6) [function]

A lambda expression may appear in contexts in which a function name is expected.
If a function definition is needed only for one specific context of calling this func-
tion, a lambda expression can efficiently substitute such a function definition and
function call. It combines both steps, and the definition of a function name be-
comes unnecessary. In such a situation the definition of a lambda expression and
its evaluation fall together.

(%i1) f(x):=2*x$
(%i1) map(f,[1,2,3,4,5]);
(%o1) [2,4,6,8,10]

(%i2) map(lambda([x],2*x),[1,2,3,4,5]);
(%o2) [2,4,6,8,10]

26.5 Macro function

105



Chapter 27

Program Flow

106



Part VII

User interfaces, Package
libraries

107



Chapter 28

User interfaces

28.1 Internal interfaces

28.1.1 Command line Maxima

28.1.2 wxMaxima

28.1.3 iMaxima

28.1.4 XMaxima

28.1.5 TeXmacs

28.1.6 GNUplot

28.2 External interfaces

28.2.1 Sage

28.2.2 Python, Jupyter, Java, etc.

108



Chapter 29

Package libraries

29.1 Internal share packages

29.2 External user packages

29.3 The Maxima exernal package manager

109



Part VIII

Maxima development

110



Chapter 30

MaximaL development

30.1 Introduction

This chapter describes from the practical viewpoint how larger programs to be writ-
ten in MaximaL can be developed and how they are made available to be used
for the practical work with Maxima. The next chapter will describe the same for
developments done in Lisp.

In general, we will want to use MaximaL whenever possible for solving mathemati-
cal problems. This language is much easier to learn and to use than Lisp. MaximaL
is Maxima’s primary user interface. This language has some limitations, though.
Since it is not lexically but dynamically scoped, there might be problems with name
spaces for variables and functions, if large user packages are to be used. We will
focus on these problems later and show what can be do to limit them as much as
possible when programming the package and when using it.

Lisp has to be used whenever system features of Maxima shall be changed or
amended. In addition, it might be considerable to use Lisp instead of MaximaL if
scoping is an issue. Contrary to MaximaL, Lisp comprises strong concepts of lexical
scoping.

It is also possible to call Lisp functions from MaximaL and to call MaximaL functions
from Lisp. So we can combine both languages in order to find the most efficient
programming solution for our problem.

Both MaximaL and Lisp programs can be compiled instead of just interpreted (as
Maxima and Lisp usually do). This may be useful for reasons of speed. We will show
when this is advisable and how it is done.

Let’s start with MaximaL now. To summarize, there are two major issues. The first
one is how to support programming packages in the Maxima language. There is no
particular IDE available for MaximaL programming, so we have to invent our own
development environment.

The second issue is how MaximaL packages we have written can be made available
efficiently for our practical computational work with Maxima and possibly for other
Maxima users, too.

The source code for MaximaL programs is generally stored in .mac files and can be
loaded into a running Maxima session from the command line or from within other

111



programs. This is possible with all Maxima interfaces. Another option when working
with wxMaxima is to store work in .wxm or .wxmx files. But these file types can only
be read by this interface. However, a feature to export them to the .mac format is
available in wxMaxima, too.

Due to its concept of input cells instead of the purely linear input and output stream
of the usual Maxima REPL (read evaluate print loop) that all other interfaces pro-
vide, we feel that wxMaxima is most apt as a MaximaL development platform. How-
ever, a major drawback is that it suppresses most of MaximaL’s debugging facilities
and that it has almost no error handling.

30.2 Development with wxMaxima

30.2.1 File management

30.3 Error handling and debugging facilities in Maxi-
maL

30.3.1 Break commands

Break commands are special MaximaL commands which are not interpreted as Max-
ima expressions. A break command can be entered at the Maxima prompt or the
debugger prompt (but not at the break prompt). Break commands start with a
colon, ":".

For example, to evaluate a Lisp form you may type :lisp followed by the form to
be evaluated. (Chapter 38: Debugging 635 5 The number of arguments taken
depends on the particular command. Also, you need not type the whole command,
just enough to be unique among the break keywords. Thus :br would suffice for
:break. The keyword commands are listed below. :break F n Set a breakpoint in
function F at line offset n from the beginning of the function. If F is given as a
string, then it is assumed to be a file, and n is the offset from the beginning of
the file. The offset is optional. If not given, it is assumed to be zero (first line of
the function or file). :bt Print a backtrace of the stack frames :continue Continue
the computation :delete Delete the specified breakpoints, or all if none are specified
:disable Disable the specified breakpoints, or all if none are specified :enable Enable
the specified breakpoints, or all if none are specified :frame n Print stack frame n, or
the current frame if none is specified :help Print help on a debugger command, or
all commands if none is specified :info Print information about item :lisp some-form
Evaluate some-form as a Lisp form :lisp-quiet some-form Evaluate Lisp form some-
form without any output :next Like :step, except :next steps over function calls
:quit Quit the current debugger level without completing the computation :resume
Continue the computation :step Continue the computation until it reaches a new
source line :top Return to the Maxima prompt (from any debugger level) without
completing the computation

112



30.3.2 Tracing

30.3.3 Analyzing data structures

30.4 MaximaL compilaton

30.5 Providing and loading MaximaL packages

113



Chapter 31

Lisp Development

31.1 MaximaL and Lisp interaction

31.1.1 Maxima and Lisp

Maxima is written in Lisp. Much of the terminology used within Maxima is based on
the terminology used in Common Lisp. Since Maxima was, especially in the early
phase of the 1960s and 1970s, as part of MIT’s project MAC, developed in parallel
to Lisp, Maxima’s basic and overall design decisions were based on the state of
the art of the contemporary Lisp available. The early part of Maxima is written in
MACLisp, which was developed as part of MIT’s project MAC, too. After the definition
of Common Lisp had been established, this has been used for all further develop-
ments within Maxima instead, but many parts already written in MACLisp remained
in this dialect until today. Common Lisp itself has been refined and enhanced over
the years up to todays ANSI standard. While new Lisp developments within Maxima
can make use of the entire functionality of this advanced Lisp standard, which most
of today’s Lisp compilers understand, the major part of Maxima is written using only
the language elements of the earlier states of Common Lisp.

31.1.2 MaximaL and Lisp identifiers

, and it is easy to access Lisp functions and variables from Maxima and vice versa.
Lisp and Maxima symbols are distinguished by a naming convention. A Lisp symbol
which begins with a dollar sign corresponds to a Maxima symbol without the dol-
lar sign. A Maxima symbol which begins with a question mark ? corresponds to a
Lisp symbol without the question mark. For example, the Maxima symbol foo cor-
responds to the Lisp symbol $FOO, while the Maxima symbol ?foo corresponds to
the Lisp symbol FOO. Note that ?foo is written without a space between ? and foo;
otherwise it might be mistaken for describe ("foo"). Hyphen -, asterisk *, or other
special characters in Lisp symbols must be escaped by backslash where they ap-
pear in Maxima code. For example, the Lisp identifier *foo-bar* is written ?foobar
in Maxima.

114



31.1.3 Lisp modes under MaximaL

31.1.3.1 Pure :lisp mode

31.1.3.2 Maxima-like Lisp mode

My mail to the list from 22.7.2017. Keywords: documentation, print, ?print

31.1.4 Executing Lisp code from within MaximaL

31.1.4.1 Break command ":lisp"

The break command :lisp can be used to execute a single Lisp form from the Maxima
prompt or the debugger prompt.
Use primitive (i.e. standard CL function) "+" to add the values of MaximaL variables
x and y:

(%i1) x:10$ y:5$
(%i3) :lisp (+ $x $y)
15

Use Maxima Lisp function add to symbolically add MaximaL variables a and b, and
assign the result to c:

(%i1) :lisp (setq $c (add ’$a ’$b))
((MPLUS SIMP) $A $B)
(%i1) c;
(%o1) b + a

Show the Lisp properties of MaximaL variable d:

(%i1) context;
(%o1) initial
(%i2) supcontext(d);
(%o2) d
(%i3) :lisp (symbol-plist ’$d)
(subc ($initial))

115



31.1.5 Calling MaximaL function from within Lisp

31.2 Using the Emacs IDE

31.3 Debugging

31.3.1 Breaks

31.3.2 Tracing

31.3.3 Analyzing data structures

31.4 Lisp compilation

31.5 Providing and loading Lisp code

There are basically two ways how to incorporate changes and amendments to the
Lisp code of Maxima. The easy way is to just load it into a Maxima session. Often
this method will be sufficient, in particular if we want to load whole new packages
written in Lisp. But this method has drawbacks when modifying system code. To
overcome them, the new or modified Lisp code has to be committed with Git, and
then Maxima has to be rebuilt from the modified source code base.

31.5.1 Loading Lisp code

31.5.1.1 Loading whole Lisp packages

31.5.1.2 Modifying and loading individual system functions or files

The user can, at the start or at any later point within a running Maxima session,
modify the code of Maxima itself. This is done by reloading files containing Max-
ima system or application Lisp code, or even by reloading only individual functions
from them. All function definitions, system variables, etc., of a reloaded file or
only the individually reloaded functions will overwrite the existing system function
definitions and variables of the same name. This is independent of whether the
existing file or function was compiled or not. Depending on the Lisp used and on
the setting of Lisp system variables, the system may issue a warning concerning
the redefinition of each function or variable, but it will not decline to do so. From the
moment on where it has been successfully loaded, the new function definition will
be used whenever the function is called. So any Maxima system function can easily
be changed by just reloading a modified version of its definition. It is not necessary
to reload the whole system file which contains it, and it is not necessary for the file
that contains the modified function to have the same name as the original system
file. Only the name of the function has to be identical. Of course, new functions can
be added this way, too.

This method is so easy that most people will want to try it out and see whether it is
sufficient for their needs.

The substitution or adding of function definitions can be automated by incorporating
the reload procedure in the maxima-init.lisp or maxima-init.mac files to be executed

116



at Maxima startup time. Even after a new Maxima release, the procedure does not
have to be changed. So in some kind, we can apply our changes on top of the latest
Maxima release.

31.5.2 Committing Lisp code and rebuilding Maxima

The method described above, however, as nice as it might seem in the beginning,
will be more and more complicated with a growing number of modifications we
make and files that are affected. Furthermore, we cannot easily incorporate modi-
fications that the Maxima team might issue in the meantime at precisely the same
files or functions that we have changed ourselves. To prevent such conflicts, at a
certain point the user will have no other choice but to use Git to manage his local
repository, commit and merge his modifications with the ones from Sourceforge, or
rebase them on top. This method will be described in detail in chapter 33.

117



Part IX

Developer’s environment

118



Chapter 32

Emacs-based Maxima Lisp IDE

It should be mentioned first that I owe large parts of the information provided in this
chapter to the kind help of Michel Talon and Serge de Marre. Michel could answer
almost any question about how to set up the environment under Windows, although
he himself does not have a Windows machine at all. Serge was maybe the first one
who had figured out how to fully set it up under Windows. With videos on Youtube
he showed how it works. Both helped me for weeks with this non-trivial matter.
Thanks a lot to both of you.

Hopefully, what took me months to find out and set up can be accomplished by the
reader of the following instructions in a couple of days.

32.1 Operating systems and shells

We are going to set up and use the Emacs-based Maxima Lisp IDE primarily under
Windows 10. But we will also set up a complete Linux environment inside of Vir-
tualBox under Windows and in addition use Linux-like environments directly under
Windows, namely MinGW and Cygwin.

32.2 Maxima

As a basis we need to have Maxima installed. There are two basic options.

32.2.1 Installer

The easiest way to install Maxima on Windows is to use the Maxima installer which
can be downloaded from Sourceforge and which is available for every new release.

Download the latest Maxima installer and install it in C:/Maxima/, disregarding the
default. Copy shortcuts for wxMaxima, console Maxima and XMaxima to the desk-
top. Special icons for the latter two can be found in the directory tree.

The installer comes with 64 bit SBCL and Clisp. Although it is preset to Clisp, it is
recommended to set the standard Lisp to SBCL, because it is much faster and much
more powerful. We will only use SBCL. Note that Clisp does not support threading
and does not work properly under Emacs in combination with Slime, especially if it
comes to the slime-connect facility, see below.

119



Use the Configure default Lisp for Maxima feature from the Windows program menu
to set Lisp to SBCL.

32.2.2 Building Maxima from tarball or repository

Using Maxima from an installer does have some drawbacks, though. Due to the
fact that it was not compiled on the same system where it is used, Emacs cannot
find the source code interactively within a running Maxima session under Slime.
Finding the source code automatically for a given MaximaL function, however, is a
very useful feature, as we will see later.

In order to allow for this feature to work, we will have to build Maxima ourselves.
This can be done from a Maxima tarball which is provided for every new release
and can be downloaded from Sourceforge. Or it can be done from a local copy of
the Maxima repository which also resides on Sourceforge. In this case, the build
process is a little bit longer, but we can use the latest snapshot available.

We build Maxima directly under Windows with the so-called Lisp only build process,
see chapter 34. Alternatively, Maxima can be built for Windows under Cygwin, see
section ??.

32.3 External program editor

32.3.1 Notepad++

If we are not really familiar with the Emacs editor yet, it is worthwhile to use
Notepad++ in addition. See https://notepad-plus-plus.org/ for reference. It is widely
used, supported by Git, and has parentheses highlighting which is most important
for programming in Lisp and very useful for MaximaL, too. In addition, we will install
a special highlighting profile for MaximaL.

Install the latest version of Notepad++, 64 bit, in the default directory C:/Program
Files/Notepad++. We will soon need it. Make it the default program to open files
of type .lisp, .mac, .txt, .sbclrc, .emacs, etc., whenever you open any of these file
types later.

A highlighting profile for Maxima, which recognizes our amended functions, is avail-
able at http://www.roland-salz.de/html/maxima.html. To download it, rightclick on
Maxima_Notepad++.xml and "Save as" Maxima_Notepad++.xml. To install it from
Notepad++, select Language/Select your language/Import. After restarting Note-
pad++, Maxima will appear in the language menu and automatically be applied to
.mac files.

32.4 7zip

Install 7zip, because you will need to unzip .tar.gz files soon.

120

https://notepad-plus-plus.org/
http://www.roland-salz.de/html/maxima.html


32.5 SBCL: Steel Bank Common Lisp

A considerable number of Lisp compilers is available. Maxima supports many of
them. The Windows installer comes with SBCL and Clisp. Independently of this,
we use SBCL for a number of reasons. It is fast, provides a wide range of facilities,
usually creates no problems for Maxima and has become a kind of de facto standard
for Common Lisp use. See the SBCL User Manual for reference. [SbclMan17]

SBCL already comes with the Maxima installer. In principle, this installation of SBCL
can be used as inferior Lisp under Emacs, too. However, we can install SBCL sepa-
rately in addition, for instance if we want to use a different (newer) version or if we
want to be independent of what happens to come with the consecutive installers.
We prefer the latter option.

32.5.1 Installation

Install the latest version of SBCL in the default directory, that is in C:/Program
Files/Steel Bank Common Lisp/<version>. The Windows path and the environment
variable SBCL_HOME will be created automatically for our Windows user, if they
don’t exist yet. However, a Windows restart is necessary to activate them. Check
that they are properly set. We should see in the path variable of our Windows user
the path

C: \ Program Fi les \ Steel Bank Common Lisp \1.3.18\

In addition, we should see the environment variable SBCL_HOME with the value

C: \ Program Fi les \ Steel Bank Common Lisp \1.3.18\

If we alternately use the separately installed SBCL and the one from the Maxima
installer later under Emacs, we do not need to change the Windows environment
variables any more. Instead, the local copies of them can easily be adjusted in the
.emacs init file, see section 32.6.3.2.

SBCL uses this environment variable to locate the folder where to search for its core
file. If the folder does not match the SBCL version that was invoked with the .exe
file, a severe error situation will arise and it will not be able to start SBCL.

To update the SBCL version, just execute the new SBCL installer. We do not need to
deinstall the old one first. A subfolder with the new version will be created and the
Windows environment variables adjusted automatically. We only need to adapt our
personal setup and initialization files (e.g. .emacs, see below).

32.5.2 Setup

32.5.2.1 Set start directory

The directory from which SBCL is started is called the SBCL start directory. The
SBCL system variable *default-pathname-defaults* will be set to this directory and
make it the so-called current directory. This will be the default path for file loads
from within SBCL. Note that relative paths can be used on the basis of the current
directory, and the standard file extension .lisp can be omitted. This also works
under Maxima, if a Lisp load command is executed, e.g.

121



: l i sp ( load "System/Emacs/ startswank" )

However, if we load with the Maxima command, we can use relative paths, too, but
we have to include the file extension .lisp

load ( "System/Emacs/ startswank . l i sp " )

32.5.2.2 Init file ".sbclrc"

A Lisp init file named ".sbclrc" can be created. It will be loaded and executed every
time SBCL starts. Unfortunately, this file has to be placed in two different locations:

C:/Users/<user>
for wxMaxima, xMaxima, the Maxima console under Windows and the SBCL console
(64 bit) under Windows.

C:/Users/<user>/AppData/Roaming
for all applications under Emacs and for the SBCL console (32 bit) under Windows.

In order to find out where the init-file is supposed to be for a specific SBCL applica-
tion, use one of the following commands from within the particular application:

(sb−impl : : userinit−pathname)
( funcal l sb−ext :*userinit−pathname− function*)

If it is a Maxima application, simply preceed each Lisp command by ":lisp " at the
Maxima prompt:

: l i sp (sb−impl : : userinit−pathname)
: l i sp ( funcal l sb−ext :*userinit−pathname− function*)

The copies from both directories can be loaded into Notepad++ simultaneously
under identical file names; as you will soon see, we will introduce a tiny difference
between the two copies.

For our Maxima Lisp developer’s environment this file should contain the following
forms. The complete model file can be found in Annex B.

1. The following lines are inserted automatically by (ql:add-to-init-file). They will
cause Quicklisp to be loaded on each start of SBCL.

#−quicklisp
( let ( ( quickl isp− init (merge−pathnames "C: / quicklisp / setup . l i sp " (

user−homedir−pathname) ) ) )
(when ( probe− file quickl isp− init )
( load quickl isp− init ) ) )
( format t "~%~a" "Quicklisp loaded . " )

2. Set compiler option for maximum debug support:

(declaim ( optimize (debug 3) ) )
( format t "~%~a" " (declaim ( optimize (debug 3) ) ) set . " )

3. Set external format to UTF-8:

( setf sb−impl : : * default−external− format* : utf−8)
( format t "~%~a" "External format set to UTF−8. " )

122



4. Display final messages:

( format t "~%~a" " In i t− Fi le C: / Users/<user>(/AppData/Roaming) / . sbclrc
completed . " )

( format t "~%~a~a" "Current directory ( also from Maxima) is " *

default−pathname−defaults*)
( format t "~%~a" "To change the current directory use ( setq *

default−pathnames−default* #P\"D: /Maxima/ Builds / \ " ) . " )
( format t "~%~a" "Relative paths can be used and standard f i l e extension .

l i sp omitted , e .g . : ( load \" subdir / subdir / filename \ " ) . " )
( format t "~%~a" " " )

In the first command adjust the Windows user and include or omit the parenthesized
part, according to where the init file is placed. This way the init file will itself show
where it is located for each SBCL application. The second line will show the current
directory to the user on start of SBCL.

32.5.2.3 Starting sessions from the Windows console

We can start an SBCL session from the Windows console. Open the Windows shell
(DOS prompt), cd to what you want to have as start directory and type SBCL.

To invoke the command history, type C-<uparrow>.

32.6 Emacs

32.6.1 Overview

Emacs is a Lisp based IDE and much more. The Emacs Manual provides an impres- [EmacsMan12]

sive description.

32.6.1.1 Editor

It’s not without reason that one generally defines

Emacs = Escape, Meta, Alt, Control, Shift.

Although the Emacs editor and in particular its embeding in the overal IDE structure
has very powerful features, it will take some time to get used to it. Before starting
to work with Emacs, the Emacs Tutorial, an introduction to the editor and the basic [EmacsTut]

Emacs environment should be studied in detail. It comes with the Emacs installation
and is a plain text file of some 20 pages linked to the Emacs opening screen. The
German version of Emacs comes with a German translation.

32.6.1.2 eLisp under Emacs

Emacs is written in eLisp, a dialect of Common Lisp. eLisp must be used to program
the .emacs init file and any file to be loaded from it. But of course eLisp can also be
used under Emacs for any other purpose. Emacs supplies is with special debugging
facilities. See the extensive eLisp Manual for details. [eLispMan13]

123



32.6.1.3 Inferior Lisp under Emacs

Any other Common Lisp variant installed on the computer can be set up to be used
as inferior Lisp under Emacs. This setup is done in the .emacs init-file. We will
use SBCL. Note that inferior Lisp is independent of the Lisp used by Maxima and of
eLisp. All can be different.

The Emacs IDE can thus be used for any other Lisp development independent of
Maxima.

32.6.1.4 Maxima under Emacs

There are various Maxima interfaces that work under Emacs. We use the Maxima
console and iMaxima which provides output created with LateX.

The iMaxima interface and how to set it up under Emacs and Windows is described
in detail on Yasuaki Honda’s iMaxima and iMath website. [iMaximaHP17]

32.6.1.5 Slime: Superior Interaction Mode for Emacs

Slime is an enhancement for Emacs. It provides much more elaborate debugging
facilities and with slime-connect, see below, it allows for setting up a parallel session
of MaximaL and Maxima Lisp. See the Slime Manual for details. [SlimeMan15]

32.6.2 Installation and update

Download the preconfigured installer version emacs-w64-25.3-O2-with-modules.7z
from Sourceforge. This will set up Emacs properly with all the necessary dll files
installed in the bin directory. Unzip it with 7zip. Unzip it to C:/ first. Then move the
folder to C:/Program Files/Emacs/emacs-25.3-02-with-modules (this does not work
directly, because it needs administrator approval which cannot be given during the
unzip process).

Alternatively, a version with almost no dll files is emacs-25.3-x86_64.zip from the
GNU mirror.

Numerous lib*.dll files can be added to the bin directory in order to bring Emacs
to its full power (read the readme file that comes with Emacs). A large number of
them and many other dependencies (.exe files) are included in emacs-25-x86_64-
deps.zip, which also gives a complete Emacs installation.

In particular we need zlib1.dll and libpng16-16.dll, which gives support for png files,
required for the iMaxima Latex interface to work.

Run bin/runemacs.exe to start Emacs and create a shortcut for it on the desktop.

Slime has to be installed separately. We will do this with the help of Quicklisp soon.

32.6.3 Setup

32.6.3.1 Set start directory

We can set the start directory for Emacs in the desktop shortcut (right click / prop-
erties / execute in). We use the path

124



D: \Programme\ Lisp

This will be the default path for file loads from within Emacs (by typing C-x C-f in
the mini buffer). This will also be the default for the start directory and therefore
the current directory for SBCL, to which the variable *default-pathname-defaults*
will be set. To show or change it from within SBCL use

*default−pathname−defaults*
( setf *default−pathname−defaults* #P"C: /maxima/ repos / " )

If we want a different SBCL start directory than the one for Emacs, we can cd to a
different directory in start-sbcl.bat (see below) prior to invoking SBCL.

32.6.3.2 Init file ".emacs"

An eLisp init file named ".emacs" can be placed in C:/Users/<user>/AppData/Roam- [EmacsMan12]

ing. It will be loaded and executed every time Emacs starts.

Under Windows it is sometimes difficult to copy/rename a file with a leading dot.
However, it can always be done with "save as" from Notepad++.

For our Maxima Lisp developer’s environment this file should contain the following
lines. The complete model file can be found in Annex C.

1. Load Quicklisp Slime Helper:

( load "C: / quicklisp / slime−helper . el " )

2. Set inferior Lisp to SBCL. We write a short Windows batch-file start-sbcl.bat which
we place in D:/Programme/Lisp/System/SBCL and which we use to start SBCL. It
allows us (by means of the Windows cd command) to preselect the start directory
for SBCL. It will be SBCL’s current directory. If we do not set the start directory in
this file, the Emacs start directory will be used as default. The batch file is

"C: / Program Fi les / Steel Bank Common Lisp /1.3.18/ sbcl .exe"
rem "C: /Maxima−5.41.0/bin / sbcl .exe"

rem Prior to cal l ing SBCL we can set the SBCL start directory .
rem I f we don’ t , the Emacs start directory w i l l be the default .
rem Example:
rem D:
rem cd /Programme/ Lisp

The above assumes that we use a separately installed SBCL. If instead we want to
use the SBCL from the Maxima installer, we have to activate the out-commented
path instead. In the init-file we write

( setq inferior− lisp−program "D: /Programme/ Lisp /System/SBCL/ start−sbcl . bat" )

3. Set up Maxima. We need to load the system eLisp file setup-imaxima-imath.el [iMaximaHP17]

which comes with Maxima. Best is to create a local copy in a fixed place on our
computer, so we do not always have to adapt the path to the file if we use different
Maxima installations. This file sets up Emacs to support Maxima and the Latex-
based interface iMaxima. We do not need to customize this file. But before loading
the file we set two system variables. *maxima-build-type* specifies whether we use

125



Maxima from an installer or whether we have built Maxima from a tarball or a local
copy of the repository. *maxima-build-dir* specifies the path to the root directory
of the Maxima we want to use. If we do not specify these two system variables, the
first Maxima installer found in "C:/" will be used. (Note that this is the oldest one
installed.) So in the init-file we write

; *maxima−build−type* can be "repo− tarball " or " ins ta l le r "
( defvar *maxima−build−type* " ins ta l le r " )

; *maxima−build−dir* contains the root directory of the build ,
terminated by a slash .
( defvar *maxima−build−dir* "C: /Maxima/maxima−5.41.0/ " )
; ( defvar *maxima−build−dir* "D: /Maxima/ builds /lob−2017−04−04−lb / " )

( load "D: /Programme/ Lisp /System/Emacs/setup−imaxima−imath. el " )

4. Key reassignments for Slime. In order to ease our work under Slime we change [SlimeMan15]

the keys for a number of its system functions.

( eval−after− load ’ slime
‘(progn
(global−set−key (kbd "C−c a" ) ’ slime−eval− last−expression )
(global−set−key (kbd "C−c c" ) ’slime−compile−defun)
(global−set−key (kbd "C−c d" ) ’slime−eval−defun)
(global−set−key (kbd "C−c e" ) ’ slime−eval− last−expression− in−repl )
(global−set−key (kbd "C−c f " ) ’ slime−compile− file )
(global−set−key (kbd "C−c g" ) ’slime−compile−and− load−file )
(global−set−key (kbd "C−c i " ) ’ slime− inspect )
(global−set−key (kbd "C−c l " ) ’ slime− load− file )
(global−set−key (kbd "C−c m" ) ’slime−macroexpand−1)
(global−set−key (kbd "C−c n" ) ’slime−macroexpand−all )
(global−set−key (kbd "C−c p" ) ’ slime−eval−print− last−expression )
(global−set−key (kbd "C−c r " ) ’slime−compile−region)
(global−set−key (kbd "C−c s" ) ’slime−eval−region)
) )

5. Customizing Emacs. Emacs can be extensively customized. The changes made [EmacsMan12]

are stored automatically at the end of ".emacs". For example, the following code
will be inserted when we do
M-x customize, Editor, Basic settings, Tab width, default 8 -> 2, Save.

(custom−set−variables
; ; custom−set−variables was added by Custom.
; ; I f you edit i t by hand, you could mess i t up, so be careful .
; ; Your i n i t f i l e should contain only one such instance .
; ; I f there is more than one, they won’ t work right .
’ ( safe− local−variable−values (quote ( (Base . 10) (Syntax . Common−Lisp) (

Package . Maxima) ) ) )
’ ( tab−width 2) )
(custom−set−faces
; ; custom−set−faces was added by Custom.
; ; I f you edit i t by hand, you could mess i t up, so be careful .
; ; Your i n i t f i l e should contain only one such instance .
; ; I f there is more than one, they won’ t work right .
)

126



32.6.3.3 Customization

In Emacs Options/Set Default Font set Courier New size to 12. Store this, so I don’t
have to set it on every start of Emacs.

32.6.3.4 Slime and Swank setup

A special setup is necessary for running Maxima or iMaxima under Emacs with
Slime. We have to write a short Lisp program named startswank.lisp and place it in

D: /Programme/ Lisp /System/Emacs

This is the code

( require ’asdf )
(pushnew "C: / quicklisp / dists / quicklisp / software /slime−v2.20/ " asdf :*

central− registry *)
( require :swank)
(swank: create−server : port 4005 : dont−close t )

32.6.3.5 Starting sessions under Emacs

To start a Lisp session under Emacs without Slime, type Alt-X and then in the
minibuffer "run-lisp" or "inferior-lisp".

The error message "spawning child process" is a typical sign of SBCL searching in
the wrong directory for its core file. Check that the path specified in start-sbcl.bat
is correct. Check that the Windows environment variables of the current user (PATH
and SBCL_HOME) are properly set.

To invoke the command history under SBCL, type Ctrl-<uparrow>.

To start a Lisp session under Emacs with Slime, type Alt-X and then in the minibuffer
"slime". The screen will split and the Slime prompt will show up.

To start a console Maxima session under Emacs without Slime, type Alt-X and then
in the minibuffer "maxima".

To start an iMaxima session under Emacs without Slime, type Alt-X and then in the
minibuffer "imaxima".

To start a console Maxima or iMaxima session under Emacs with Slime, proceed as
follows

1. Start Maxima or iMaxima under Emacs as described above.

2. At the Maxima prompt, enter

: load ( "System/Emacs/ startswank . l i sp " )

3. If the load succeeded, type Alt-X and then in the minibuffer "slime-connect".

4. At the message Host: 127.0.0.1 hit return in the minibuffer.

5. At the message Port: 4005 again hit return in the minibuffer.

Now the Emacs screen splits and a new window is opened with a prompt Maxima>.
This is a Lisp session under Slime inside of the running Maxima session. All Maxima
variables and functions can be addressed from it. This Emacs buffer can be used to

127



debug or make modifications to the Maxima source code while Maxima is running.
We can switch back and forth between the Maxima-Lisp and the Maxima-MaximaL
windows by "Ctrl-x o" and enter input in both. The first time we switch back to
the MaximaL window, there will be no Maxima prompt visible. Nevertheless, we
can enter something followed by a semicolon, e.g. "a;" and the input prompt will
reappear. Note that MaximaL variables have slightly different names under Lisp:
they have to be preceeded by a "$" character, so e.g. the variable "a" has to be
addressed as "$a" from the Lisp window. And as always in Lisp, commands are not
terminated by a semicolon as they are in MaximaL.

It should be noted here that we won’t have Slime’s full functionality unless we use
a Maxima built by ourselves. See chapter 34 for how this is done. Then, if the build
succeeded, set up Emacs to use this build. Only this will allow Slime to interactively
find the source code of Maxima functions while Maxima is running in parallel with a
Lisp session under Emacs.

32.7 Quicklisp

Quicklisp is a Lisp library and installation system. It runs under Lisp, so we will
install it and use it from SBCL. A good introduction and instruction how to use it can
be found at https://www.quicklisp.org/beta/. We will soon use Quicklisp to install
Slime.

32.7.1 Installation

Quicklisp will be installed via our Lisp system, which is SBCL. Download the file
quicklisp.lisp from the Quicklisp homepage. Start SBCL from the Windows console
by typing "SBCL" at the DOS prompt. Then, at the SBCL prompt, enter the following
Lisp commands one by one. This will install Quicklisp in "C:/Quicklisp". Don’t install
it in the program files subdirectory, because Quicklisp does not like blanks in the
filename. Then Quicklisp is loaded and some code is added to our .sbclrc init-file,
see section 32.5.2.2, in order for Quicklisp to be loaded automatically whenever we
start SBCL.

( load "C: / Users/<user>/Downloads/ quicklisp . l i sp " )
( quicklisp−quickstart : i n s ta l l : path "C: / Quicklisp / " )
( load "C: / Quicklisp / setup . l i sp " )
( ql : add− to− init− file )

If in the future we want to update our quicklisp installation, all we have to do is
(from SBCL)

( ql : update−client )
( ql : update−dist " quicklisp " )

Now that we have installed Quicklisp, we stay in SBCL to continue with installing
Slime.

128

https://www.quicklisp.org/beta/


32.8 Slime

If we install Slime via Quicklisp (alternatively it can be installed from Melpa), it will
be stored inside of C:/Quicklisp. Under SBCL, execute the following Lisp forms one
by one. This will install Slime, including the Swank facilities. The last form will install
slime-helper.el and add some code to our .emacs init file, see section 32.6.3.2, in
order to load it and facilitate working with Slime. See http://quickdocs.org/quicklisp-
slime-helper/.

( ql : update−client )
( ql : update−dist " quicklisp " )
( ql :system−apropos "slime" )
( ql : quickload "swank" )
( ql : quickload "quicklisp−slime−helper" )

We can check which version we have installed by looking at
C:/Quicklisp/dists/quicklisp/software. We should find a folder here named slime-
v2.20.

If we want to update an existing Slime installation, we follow exactly the same
procedure as described above. A subfolder with the new version will be installed.
It is not necessary to uninstall the old one. We only have to adapt the paths in our
personal setup and initialization files (e.g. in startswank.lisp, see below).

32.9 Asdf/Uiop

ASDF (Another system definition facility) is a Lisp build system. See https://common-
lisp.net/project/asdf/ for a description. UIOP is an extension of ASDF which signifi-
cantly enhances Common Lisp’s functionality. For instance, it emulates file handling
procedures for Windows.

32.9.1 Installation

Our Quicklisp installation comes with a Lisp source file asdf.lisp in the main folder.
But Asdf/Uiop is already included in our SBCL installation, too. Here, in the contrib
folder, we find the compiled files asdf.fasl and uiop.fasl. These are the files used by
SBCL. It is important to have the latest possible version of Asdf/Uiop installed here.
To find out which version we have in our SBCL installation, we can do from SBCL

( require ’asdf )
asdf : : * asdf−version*

"3.1.5"

The version of the asdf.lisp in our Quicklisp installation can be found in the source
code itself. Just open the file with Notepad++. It turns out to be much older, in our
case it is 2.29. We continue our investigations from SBCL:

( ql : update−client )
( ql : update−dist " quicklisp " )
( ql :system−apropos "asdf" )

tells us that the Quicklisp library has version 3.2.1 available. Finally, we take a look
at the Asdf homepage and find out that the latest released version is 3.3.1. So we

129

https://common-lisp.net/project/asdf/
https://common-lisp.net/project/asdf/


download the corresponding asdf.tar.gz and unpack it with 7zip (This goes in two
steps: first we unzip the .tar.gz, then the resulting .tar). In addition, we download
the asdf.lisp file from the Asdf archive. Oops, if we just click on the file, we get
one very long string without any line breaks. But what we want can be done in
the following way: rightclick on the file in the archive, select "save as" and set the
file name to asdf.lisp. Then we open the file with Notepad++. Now we have the
correct Windows line endings (CR/LF instead of Unix LF only)! What we want to do
now is compile this file ourselves to create the asdf.fasl (which should include Uiop
as well and) which we will insert into our SBCL/contrib folder to replace the existing
version. We always save the existing versions, of course, by renaming them. Let’s
assume the asdf.lisp is in the downloads folder. Then we continue with SBCL

( compile− file "C: / Users/<user>/Downloads/ asdf . l i sp " )

and wait patiently until the compilation process is finished. At the end, the asdf.fasl
file should be in the download folder, too. We copy it into the folder Steel Bank
Common Lisp/1.3.18/contrib. Then we leave SBCL by entering (quit), start it again
from the Windows DOS prompt and continue with checking

( require ’asdf )
asdf : : * asdf−version*

"3.3.1"

It is obvious how we have to install a possible update later.

32.10 Latex

We need to have a Latex installation on our system if we want to use the iMaxima
interface, which runs under Emacs and gives LateX output.

32.10.1 MikTeX

MikTeX provides the Latex environment needed for iMaxima. This is a very compli-
cated system, and it is important to follow the installation instruction carefully.

Download the latest version from miktex.org. Execute the program as administrator
(Rightclick). Install MikTeX in the default directory C:/Program Files/MikTeX 2.9. Load
packages on the fly: "yes". If during installation your antivirus program complains,
ignore it this time and continue the installation.

For maintenance always use the subdirectory Maintenance(Admin). After the instal-
lation, open the MikTex packet manager from the MikTeX 2.9/Maintenance(Admin)
directory in the program menu. Install packages mhequ, breqn, mathtools, l3kernel,
unicode-data. These files are needed for iMaxima. Immediately run Update from
Maintenance(Admin), too, and install all the available updates proposed.

32.10.2 Ghostscript

Ghostscript is needed for iMaxima, too.

Install Ghostscript in the default directory C:/Program Files/gs. An overview about
the software is to be found under C:/Program Files/gs/gs9.21/doc/Readme.htm.

130



32.10.3 TeXstudio, JabRef, etc.

TeXstudio is not needed for iMaxima, but it is a nice LateX editor which runs on top
of MikTeX. This documentation was written with TeXstudio. The author wishes to
thank the TeXstudio team for the kind help and support.

Note that the wxMaxima interface provides nice LateX output via the context menu.

Install TeXstudio in the default directory C:/Program Files (x86)/TeXstudio. Set biber
to be the standard bibliography program.

JabRef is a nice program to maintain a larger bibliography. Personally, we prefer
to edit the .bib file with Notepad++, however, and use JabRef only to display the
result and do searches in it.

32.11 Linux and Linux-like environments

32.11.1 Cygwin

Install Cygwin in C:/Program Files/cygwin64.

32.11.2 MinGW

Install MinGW in C:/Program Files/MinGW.

32.11.3 Linux in VirtualBox under Windows

32.11.3.1 VirtualBox

32.11.3.2 Linux

131



Chapter 33

Repository management: Git
and GitHub

33.1 Introduction

This chapter follows up on the discussion of section 31.5.

33.1.1 General intention

Let us briefly preview why we use Git and GitHub and what we want to do with
them. We will create a local Maxima repository in order to be able to look at the
Maxima source code files and to modify or enhance them. But we will not only make
our own changes, we will also continuously update our local mirror by downloading
all modifications done to the Maxima code base at Sourceforge. It is only with the
help of Git that we will be able to merge (or, as we will see, rebase) our code
modifications with the ones being done in parallel at Sourceforge. This will allow
us to modify the Maxima code according to our needs without losing the bug fixes,
modifications and enhancements done by the Maxima team at the same time.

On GitHub we will create a mirror from Sourceforge, too, but then we will not update
it directly from Sourceforge, but instead from our local repository. So it will be a
mirror of our local repository. It will publish the changes that we have done to
the code and which are, as we saw, always based on the latest updates done at
Sourceforge.

The changes we do to our repository can then be incorporated in our Maxima builds.

33.1.2 Git and our local repository

The repository on Sourceforge works under the version control system Git. In or-
der to create a local copy and to facilitate successive downloading of the latest
snapshots, we need to install Git on our system, too.

If we have access rights to the Sourceforge repository, we also use Git to send our
commits.

A good introduction to Git is the book ProGit by Scott Chacon which is available as [ChProGit14]

PDF for free. All the details can be found in the Git Online Reference. [GitRef17]

132



33.1.2.1 KDiff3

We will use KDiff3 to help us resolve merge conflicts arising under Git.

33.1.3 GitHub and our public repository

We can work with a local repository on our computer only. If in addition we want
to make public our work or cooperate with others outside of Sourecforge, we can
create a public copy of our local repository (which started from a copy of the Source-
forge repository). This can be done for instance on GitHub. We will explain how a
copy (it is called a mirror) of the Maxima repository can be created on GitHub and
how we can then synchronize it with our work coming from the local repository.

Eventually we can also use our GitHub repository to communicate with the Max-
ima external packet manager system, if we want to make our packages directly
accessible to Maxima users.

33.2 Installation and Setup

33.2.1 Git

33.2.1.1 Installing Git

Download the latest Windows installer from git-scm.com. Install it as administrator
in the default directory C:/Program Files (x86)/Git with the default settings. But for
the default editor select Notepad++. In particular, we want to be sure to use the
recommended option to check out files in Windows style (with CR/LF ending) and
commit files in Unix style (with LF ending). Also, as the default says, install the TTY
console.

Create shortcuts on the desktop from the program menu. We can use the CMD
interface which resembles the Windows console. But we prefer Git bash which has
the advantage of always displaying the branch we are on. In order to set our start
directory to D:/Maxima/Repos do the following. Rightclick on the desktop shortcut.
Select properties. Change Execute in to the above path. In Destination delete the
option -cd-to-home.1

33.2.1.2 Installing KDiff3

Install the 64bit version of KDiff3 with all defaults and in the default location.

33.2.1.3 Configuring Git

Git allows configuration at various levels: system, user, project. Configuration files
are therefore created in various locations. In C:/Users/<user>/ we place the file
.gitconfig given in Annex D, after having done some personal adjustments to it.

1RS only: When CMD is started, rightclick on the margin of the window and in properties set font
size to 20. For Git bash, set options/text/font to Courier new, size 14.

133



Most important is to substitute your name and email. We have also specified the
text editor to be used for commit messages and the merge tool. The autocrlf com-
mand allows for the correct transformation of line endings from Unix to Windows
and vice versa. The whitespace command causes git-diff to ignore "exponentialize-
M" characters. In addition we have defined some shortcuts for the most frequent
commands (st, ch, br, logol). With

git config −−global −−edit

from the Git prompt (note the double dashes before each option) Notepad++ should
open and display the file .gitconfig.

There is a known problem with Git not handling UTF-8 characters correctly, for in-
stance when displaying committ messages which contain German umlauts in the
name of the committer, see stackexchange. We want to apply the proposed solu-
tion and create a Windows environment variable LC_ALL which we assign the value
C.UTF-8. This will solve the problem permanently for both Git CMD and Git bash.

33.2.2 GitHub

33.2.2.1 Creating a GitHub account

On GitHub, presently (Dec. 2017), it is free of charge to open a personal account
and create public repositories within it. Public here means that we cannot hide
the source code of our repositories. Everyone else can see it and clone it. This is
independent of whether we use the repository alone or together with others. In the
latter case we can give explicit permission to individual other GitHub users to have
write access to our repository.

So the first step is to sign up in GitHub. We create a personal account by assigning
a user name and password and providing an email address for communication. All
other settings we can do later. It is always possible to change any settings at any
time. Even the user name can be changed, but it is not advisable to do so, because
this change can never be done to 100 percent. It is easily possible to delete the
account, too.

On the next screen we select the option Unlimited public repositories for free. On
the following screen, let us Skip this step. Next, instead of Read the guide or Start
a project, we move directly to our profile and use it as a starting point for creating
our Maxima repository. So in the upper right corner we click on the little triangle to
the right of the avatar symbol and select Your profile. We create a browser favorite
which leads us to this page, because everything else will start from here. Just to
give you a glimpse at how we will continue: click on the little triangle to the right of
the "+" sign in the upper right corner and you will see the options New repository
and Import repository which we will soon make use of.

We will use only plain command line Git to communicate with our GitHub reposito-
ries. There are special programs from GitHub to do so, too, e.g. the GitHub desktop,
but in our opinion it is a waste of time and effort to learn them. Git is the underlying
software in any case and in order to have full control of what we want to do, we
better stay at this ground level. Every other program on top of it will hide informa-
tion from us that at one point or another we will urgently need in order to make

134

https://stackoverflow.com/questions/41139067/git-log-output-encoding-issues-on-windows-10-command-prompt


Git do exactly what we want. This can be complicated at times, we need to learn a
number of Git commands, but there is no way around it.

33.3 Cloning the Maxima repository

33.3.1 Creating a mirror on the local computer

This process is called cloning. Let’s assume we are in our directory D:/Maxima/Repos
and want to place the copy of the repository in a subfolder named Maxima. We look
at the Maxima domain at Sourceforge https://sourceforge.net/p/maxima/code/ci/master/tree/
to find out what the download URL of the git repository is. We select the https ac-
cess rather than the git:// access. Then we enter at our Git prompt

git clone https : / / g i t . code . sf . net /p/maxima/code rMaxima

where rMaxima ist our destination subfolder. And now we wait patiently until the
latest snapshot (meaning: the actual status) of the Maxima repository from Source-
forge has been completely copied.

33.3.2 Creating a mirror on GitHub

We will clone the Maxima repository from Sourceforge to our account on GitHub in
a similar way as we cloned it to our local computer. But once we have done that,
we will update our GitHub repository only via our local repository. This includes all
changes made to the Maxima repository on Sourceforge. We will download them
periodically to the local repository and upload them from our local repository to
the GitHub repository. So in effect, our GitHub repository is only going to be a
direct mirror of Sourceforge in the beginning. After this initialization, the GitHub
repository will rather be a mirror of the repository on our local computer. It will
reflect the work that we have done on our local repository and at the same time
incorporate the changes done at Sourceforge.

We click on the little triangle to the right of the "+" sign in the upper right corner
of our GitHub user profile, then select Import repository. We have to specify the
URL of the source repository at Sourceforge (called the old repository on the GitHub
screen) which is still

https : / / g i t . code . sf . net /p/maxima/code

and then a name for the mirror on our GitHub account, let’s say "rMaxima", too.
Then we click on Begin import. The import from Sourceforge to GitHub can take a
couple of minutes.

Once we have receivd the email notification about our mirror having been success-
fully installed on GitHub, we go to our account profile again and Customize our
pinned repositories by selecting our new repository Maxima. Now it will be visible
on our account profile and we can always find it and move to it easily. On selecting
our new repository, a short description of it can be given which will be displayed on
the acount profile together with its name.

135

https://sourceforge.net/p/maxima/code/ci/master/tree/


33.4 Updating our repository

33.4.1 Setting up the synchronization

Soon there will be new commits submitted at the Sourceforge repository and we
will want to download them. Together with the changes we make ourselves we will
want to push them to our GitHub mirror. So what we want to do now is prepare for
updating our local repository from Sourceforge and our GitHub repository from our
local repository.

33.4.2 Pulling to the local computer from Sourceforge

Let’s first look into our local repository. We start Git CMD and cd to D:/Maxima/Repos
/rMaxima. Then we enter

git remote show origin

In Git, origin is the shortname of our source repository, which is Maxima at Source-
forge. The above command gives us an overview of what exactly we’ve just cloned
from there.

The most interesting one of the remote branches we see is master. It is the official,
the decisive, the relevant branch with the actual status of the Maxima repository
at Sourceforge. Our local branch master corresponds to it. Our local master shall
always be a true copy of the present status at Sourceforge. So we never com-
mit changes to it, we only use it for pulling from Sourceforge and for pushing the
changes which come from Sourceforge to our Maxima repository at GitHub. Instead,
we do our work on other branches which we create from our local master.

Updating our local master branch from Sourceforge is done by

git ch master
gi t pul l

Note that we use the shortnames defined in .gitconfig, see. Annex D. With the
option pull –all all tracked branches will be pulled from origin.

New branches on Sourceforge will be shown in the list by the remote show origin
command, marked as new. On the next git pull they will automatically be tracked.
Branches deleted on Sourceforge will be marked in the list as stale. They will not
be deleted automatically by pull, instead we have to remove them manually with

git ch master
gi t remote prune origin

33.4.3 Pushing to the public repository at GitHub

First we create a shortname github for our rMaxima repository at GitHub by associ-
ating it with the URL of our GitHub repository:

git remote add github https : / / github .com/<username>/rMaxima. gi t

Then we take a look at our GitHub repository by entering

git remote show github

136



Just as our local master shall always be a true copy of master at Sourceforge, our
master at GitHub shall always be a true copy of our local master. Updating master
on GitHub from our local master is done by

git ch master
gi t push github

With the option push github –all, all local branches configured for push (see list
remote show github) will be pushed to GitHub. In order to configure a branch for
push to GitHub or to forward a new branch from Sourceforge to GitHub, we have to
track the branch first in our local repository, done with the checkout command, and
then push it to GitHub

git ch <name of new branch>
git push github <name of new branch>

In the push command the name of the branch is not necessary, if we are on this
branch already. If we want to delete a branch from GitHub, for instance because it
has been deleted from Sourceforge, we do

git push github −d <name of branch to be deleted>

To update the repository completely with all branches from Sourceforge after a year
or more, it is easiest to delete the GitHub repository, clone it newly and push all my
own branches again.

33.5 Working with the Repository

33.5.1 Preamble

Git is a very intelligent program. It is most important for the user to know that
under Git what we see in the Windows directories is not what is physically there,
but what Git virtually shows us. The contents of what we see of the repository in
Windows explorer depends on what Git branch we are currently in. Branches do not
correspond to Windows explorer directories! What branch we are in, can only be
seen in Git itself, not in the explorer. Changes to files in one branch, even addition
and deletion of files, will not be visible in the same Windows folder any more, if
we switch to another branch where these changes have not been incorporated. Be
sure to have understood that very clearly before working with Git. This will prevent
you from some severe headaches (you will probably get others with Git at some
point or another anyways).

33.5.2 Basic operations

We get a list of all our local branches with

git br

To see the status of the current branch, type

git st

We can create a new branch from an existing one and switch to it by doing

137



git ch <name of the branch we want to branch from>
git ch −b <name of the new branch>

In order to obtain a compact log output of the last n commits we can type

git logol −n

33.5.3 Committing, merging and rebasing our changes

138



Chapter 34

Building Maxima under
Windows

34.1 Introduction

In this section we show how Maxima can be built on the local computer under the
Windows operating system. Maxima is primarily designed for Unix-based operat-
ing systems, especially Linux. Sophisticated system definition and build tools are
employed to automate as much as possible the complicated build process. Since
these tools (in particular GNU autotools) are not available under Windows, there are
two ways how Maxima can be built here. The first one makes use of the Unix-based
tools and thus needs an environment which supports them. Such an environment is
Cygwin, a Unix-like shell running under Windows and in which Windows executables
can be produced. The second one does not use the Unix-based build tools at all,
but an (almost) purely Lisp-based method. It can be accomplished under the plain
Windows command line shell. All we need is a Lisp system installed. Since this is
the simpler and easier method, we demonstrate it first. Note however, that not all
Maxima user interfaces and features are supported with this build.

34.2 Lisp-only build

34.2.1 Limitations of the official and enhanced version

The official Lisp-only build process is described in the text file INSTALL.lisp which can
be found in the main folder of any release tarball or the repository. This procedure
has the following limitations:
- XMaxima cannot be built.
- wxMaxima is not included.
- GNUplot is not included.
- the documentation cannot be built.

We have made some enhancements to this procedure. In the following we give a
complete description of the revised procedure. Now the documentation can be built
with the exception of the PDF version.

We can build Maxima from a release source code tarball or from the latest repository
snapshot. The following recipe comprises both alternatives.

139



34.2.2 Recipe

1. Install the Windows installer of the latest release in C:/Maxima/maxima-5.41.0.
Download the source code file maxima-5.41.0.tar.gz of the latest Maxima release
from https://sourceforge.net/projects/maxima/files/Maxima-source/5.41.0-source/ and
extract the tarball with 7zip in the folder D:/Maxima/Tarballs/.

2. Create the directory of the new build and name it appropriately, e.g. D:/Maxima/
Builds/<lob-2017-12-09-lb>, now called the build directory.

3. Depending on what to build from,
3a. either copy the extracted source code from the release tarball into the build
directory; or
3b. select the branch of the local repository D:Maxima/Repos/rMaxima from which
to build. Pull master and rebase this branch on master first in order to have our
changes rebased on the latest Git snapshot from Sourceforge. Copy the selected
branch into the build directory.
3c. In both cases, copy the PDF version of the documentation, the file maxima.pdf,
from the subfolder share/doc of the Windows installer into the subfolder doc/info of
the build directory.

4. The tarball contains the complete documentation of the latest release with the
exception of the PDF version. In case the documentation shall not be built (also if
we build from a repository snapshot), it can be simply be copied from the tarball
into the build directory:
4a. For the online help system: From doc/info take maxima-index.lisp and all files
*.info* and copy them into doc/info of the build directory.
4b. For the html version: From doc/info take all files *.html and copy them into
doc/info of the build directory.

5. Now we use Lisp. The following steps can be executed either using SBCL form a
Windows command line shell or under Emacs/Slime (Note, however, that dumping
can be done only from the Windows command line!): 5a. Open a Windows com-
mand shell and cd to the top-level of the build directory (i.e., the directory which
contains src/, tests/, share/, and other directories). Then launch SBCL. Alternatively,
5b.

34.3 Building Maxima with Cygwin

140

https://sourceforge.net/projects/maxima/files/Maxima-source/5.41.0-source/


Part X

Maxima’s file structure, build
system

141



Chapter 35

Maxima’s file structure:
repository, tarball, installer

142



Chapter 36

Maxima’s build system

143



Part XI

Lisp program structure (model),
control and data flow

144



Chapter 37

Lisp program structure

37.1 Supported Lisps

145



Part XII

Appendices

146



Appendix A

Glossary

A.1 MaximaL terminology

In this section we define the terminology needed to describe MaximaL. Sometimes
this terminology is semantically close to the terminology used in Lisp, which will be
given in the next section.

Argument

If a function f has been defined with parameters, a function call of f has to be sup-
plied with corresponding arguments. When f is evaluated, arguments are assigned
to their corresponding parameters. For the distinction of required and optional ar-
guments, see section 26.2.2.

Array

An array is a data structure ...

Assignment

Binding a value to a variable. This is done explicitly with the assignment operator.
The value can be a number, but also a symbol or an expression. In an indirect
assignment, done with the indirect assignment operator, not a symbol is bound
with a value, but the value of the symbol, which must again be a symbol, is bound.

Atom

An atom is an expression consisting of only one element (symbol or number).

Binding

A binding ...

Canonical rational expression (CRE)

A canonical rational expression is a special internal representation of a Maxima
expression. See section 7.8.

Constant

There are numerical constants and symbolical constants. A number is a numerical

147



constant. Maxima also recognizes certain symbolical constants such as %pi, %e and
%i which stand for π, Euler’s number e and the imaginary unit , respectively. For
Maxima’s naming conventions of system constants see section 3.4.2.2. Of course
the user may assign his own symbolical constants.

Equation

An equation is an expression comprising an equal sign =, one of the identity oper-
ators, as its major operator. An unequation is an expression with the unequation
operator # as its major operator.

Expression

Any meaningful combination of operators, symbols and numbers is called an ex-
pression. An expression can be a mathematical expression, but also a function call,
a function definition or any other statement. An expression can have subexpres-
sions and is build up of elements. An atom or atomic expression contains only one
element. A complete subexpression ... See subst (eq_1, expr) for an example.

See also lambda expression.

Function

A function is a special compound statement which is assigned a (function) name,
has parameters and in addition can have local variables. Maxima comprises a large
number of system functions, as for instance diff and integrate. Furthermore, the
user can define his own user functions. A special operator, the function definition
operator :=, is used for this purpose. On the left side, the function name and its
parameters are specified, and on the right side, the function body. Alternatively,
function define can be used.

On calling a function, arguments 1are passed to it which are assigned to the func-
tion’s parameters at evaluation time. The result of the function’s subsequent com-
putations, i.e. the evaluation of the function, is returned. We speak of the return
value of a function call. A function call can be incorporated in an expression just
like a variable. An ordinary function is evaluated on every call, see section 26.2.2.

An array function stores the function value the first time it is called with a given
argument, and returns the stored value, without recomputing it, when that same
argument is given. Such a function is known as a memoizing function, see section
26.2.3.

A subscripted function is a special kind of array function which returns a lambda
expression. It can be used to create a whole family of functions with a single defi-
nition, see section 26.2.4.

In addition there are functions without name, so-called lambda functions or anony-
mous functions, which can be defined and called at the same time. Their return
value is called a lambda expression. See section 26.4.

1Instead of parameter and argument, the terminology formal argument and actual argument is
used in the Maxima Manual.

148



A macro function is similar to an ordinary function, but has a slightly different be-
havior. It does not evaluate its arguments and it returns what is known as a macro
expansion. This means, the return value is itself a Maxima statement which is
immediately evaluated. Macros are defined with the macro function definition op-
erator ::=.

Lambda expression

The return value of a lambda function is called a lambda expression. See section
26.4.

Macro expansion

Macro expansion is part of the mechanism of a macro function.

Operator

A Maxima operator can be view in a way similar to a mathematical operator. The
arithmetic operators +, -, *, /, for example, are employed in an infix notation just as
in mathematics.

The equal sign =, the assignment : or the function definition := are examples of
other Maxima system operators.

Maxima even allows the user to define his own operators, be they used in prefix,
infix, postfix, matchfix or other notations.

Parameter

A parameter is a special local variable defined for a function, which is assigned the
value of a corresponding argument at function call.

Pattern matching

Pattern matching ...

Property

A MaximaL property ... A Lisp property ...

Quote-quote ’ ’ is twice the quote character, not the doubel-quote ” character.

Rule

A rule ...

Scope

We distinguish dynamic scope from lexical scope...

Symbol, identifier

Maxima allows for symbolical computation. Its basic element is the symbol, also
called identifier. A symbol is a name that stands for something else. It can stand
for a constant (as we have seen already), a variable, an operator, an expression, a
function and so on.

149



Statement

An input expression terminated by ; or $ which is to be evaluated is called a state-
ment. In Lisp it would be called a form.

If a number of statements are combined, e.g. as a list enclosed in parentheses and
separated by commas, called a sequential, we speak of a compound statement. The
statements forming a compound statement are called its sub-statements. Block
and function are other special forms of a compound statement. A block is a com-
pound statement which can have local variables, a function is assigned a name and
can have parameters, see chapter 26.

Value

A symbol (i.e. a variable, a constant, a function, a parameter, etc.) can be unbound;
then it has not been assigned a value. When a value has been assigned to the
symbol, it is bound. Binding a value to a symbol is called assignment. Retrieving
the value of a symbol is called referencing or evaluation.

The return value is what a function returns when it is called and evaluated.

Variable

A variable has a name (which is represented by a symbol) and possibly a value.
Assignment of a value to a variable is called binding. We say: the variable is bound
to a value. When a variable has been bound, it is referencing this particular value.
Evaluation in the strict sense means dereferencing, which is: obtaining from a vari-
able the value which was bound to it previously.

In general, Maxima does not require a variable to be defined explicitly by the user
before using it. In particular, Maxima does not require a variable to have a specific
type (of value). Just as when doing mathematics on a sheet of paper, we can start
using a variable at any time. It will be defined (allocated) at use time by Maxima
automatically. We can start using a variable without binding it to a value. Maxima
recognizes the symbol, but it remains unbound. But we can also bind it at any time,
even right at the beginning of its use. The type of value of a specific variable may
change at any time, whenever the value itself changes.

The value of a variable does not need to be a numerical constant. It can be another
variable or any combination of variables and operators, that is, an expression. It
can even be much more than this. The variety of types (of values) of a variable is
so broad that in Lisp and in Maxima we generally use the term symbol to denote
not only the name of variable, but the variable as a whole.

One of the specific features of Lisp is that a symbol not only can have a value, but
also properties. A Maxima symbol can have properties, too, as we will see later. It
can even have two types of properties, Lisp properties and Maxima properties.

There are user variables, which the user defines, and system variables. System
variables which can be set by the user to select certain options of operation are
called option variables. With respect to the name space where the variable appears
we distinguish between global variables and local variables.

150



A.2 Lisp terminology

Form

A Lisp form ...

151



Appendix B

SBCL init file .sbclrc

The following is a model of the complete SBCL init file ".sclrc" to be placed both in
C:/Users/<user> and C/:Users/<user>/AppData/Roaming. See section 32.5.2.2 for
explanations.

; i n i t i a l i z e Quicklisp
#−quicklisp
( let ( ( quickl isp− init (merge−pathnames "C: / quicklisp / setup . l i sp " (

user−homedir−pathname) ) ) )
(when ( probe− file quickl isp− init )
( load quickl isp− init ) ) )
( format t "~%~a" "Quicklisp loaded . " )

; Set compiler option for maximum debug support
(declaim ( optimize (debug 3) ) )
( format t "~%~a" " (declaim ( optimize (debug 3) ) ) set . " )

; Set external format to UTF−8
( setf sb−impl : : * default−external− format* : utf−8)
( format t "~%~a" "External format set to UTF−8. " )

; display f ina l messages
( format t "~%~a" " In i t− Fi le C: / Users/<user>(/AppData/Roaming) / . sbclrc

completed . " )
( format t "~%~a~a" "Current directory ( also from Maxima) is " *

default−pathname−defaults*)
( format t "~%~a" "To change the current directory use ( setq *

default−pathnames−default* #P\"D: /Maxima/ Builds / \ " ) . " )
( format t "~%~a" "Relative paths can be used and standard f i l e extension .

l i sp omitted , e .g . : ( load \" subdir / subdir / filename \ " ) . " )
( format t "~%~a" " " )

152



Appendix C

Emacs init file .emacs

The following is a model of the complete Emacs init file .emacs to be places in
C:/Users/<user>/AppData/Roaming. See section 32.6.3.2 for explanations.

; load Quicklisp Slime helper
( load "C: / Quicklisp / slime−helper . el " )

; set in fer ior Lisp to SBCL
( setq inferior− lisp−program "C: Users/<user>/start−sbcl . bat" )

; Manually set temporary copy of Windows environment variable SBCL_HOME
; This i s here only for debugging . Normally we don’ t have to do this . The

Windows environment variable is set to our separately instal led in fer ior
Lisp , and Maxima wi l l set the temporary copy of the variable i t s e l f .

; ( setenv "SBCL_HOME" "C: /maxima−5.41.0/ bin ")
; ( setenv "SBCL_HOME" "C: / Program Fi les / Steel Bank Common Lisp /1.3.18/")

; set up Maxima
; *maxima−build−type* can be "repo− tarball " or " ins ta l le r "
( defvar *maxima−build−type* " ins ta l le r " )
; *maxima−build−dir* contains the root directory of the build , terminated

by a slash .
( defvar *maxima−build−dir* "C: /Maxima/maxima−5.41.0/ " )
; ( defvar *maxima−build−dir* "D: /Maxima/ builds /lob−2017−04−04−lb / " )
( load "D: /Programme/Maxima/System/Emacs and Slime setup for Maxima/

setup−imaxima−imath. el " )

; Key reassignments for Slime
( eval−after− load ’ slime

‘(progn
(global−set−key (kbd "C−c a" ) ’ slime−eval− last−expression )
(global−set−key (kbd "C−c c" ) ’slime−compile−defun)
(global−set−key (kbd "C−c d" ) ’slime−eval−defun)
(global−set−key (kbd "C−c e" ) ’ slime−eval− last−expression− in−repl )
(global−set−key (kbd "C−c f " ) ’ slime−compile− file )
(global−set−key (kbd "C−c g" ) ’slime−compile−and− load−file )
(global−set−key (kbd "C−c i " ) ’ slime− inspect )
(global−set−key (kbd "C−c l " ) ’ slime− load− file )
(global−set−key (kbd "C−c m" ) ’slime−macroexpand−1)
(global−set−key (kbd "C−c n" ) ’slime−macroexpand−all )

153



(global−set−key (kbd "C−c p" ) ’ slime−eval−print− last−expression )
(global−set−key (kbd "C−c r " ) ’slime−compile−region)
(global−set−key (kbd "C−c s" ) ’slime−eval−region)

) )

; The following is placed here automatically by
; M−x customize , Editor , Basic settings , Tab width , default 8 −> 2, Save
(custom−set−variables
; ; custom−set−variables was added by Custom.
; ; I f you edit i t by hand, you could mess i t up, so be careful .
; ; Your i n i t f i l e should contain only one such instance .
; ; I f there is more than one, they won’ t work right .
’ ( safe− local−variable−values (quote ( (Base . 10) (Syntax . Common−Lisp) (

Package . Maxima) ) ) )
’ ( tab−width 2) )
(custom−set−faces
; ; custom−set−faces was added by Custom.
; ; I f you edit i t by hand, you could mess i t up, so be careful .
; ; Your i n i t f i l e should contain only one such instance .
; ; I f there is more than one, they won’ t work right .
)

This is the file start-sbcl.bat:

"C: / Program Fi les / Steel Bank Common Lisp /1.3.18/ sbcl .exe"
rem "C: /Maxima−5.41.0/bin / sbcl .exe"

rem Prior to cal l ing SBCL we can set the SBCL start directory .
rem I f we don’ t , the Emacs start directory w i l l be the default .
rem Example:
rem D:
rem cd /Programme/ Lisp

154



Appendix D

Git configuration file ".gitconfig"

The following is a model of the complete Git configuration file ".gitconfig" to be
placed in C:/Users/<user>. See section 33.2.1.3 for explanations.

[ f i l t e r " l f s "]
clean = git− l f s clean −− %f
smudge = git− l f s smudge −− %f
required = true

[user ]
name = Roland Salz

[user ]
email = maxima@roland−salz .de

[core ]
editor = ’c : / Program Fi les /Notepad++/Notepad++.exe’ −multi Inst −

nosession
autocrlf = true
whitespace = cr−at−eol

[ al ias ]
st = ’ status ’
ch = ’checkout ’
br = ’branch ’
logol = log −−pretty=format:’%h %cn %cd %s ’

[merge]
tool = kdiff3

[mergetool " kdiff3 "]
path = c : / Program Fi les / kdiff3 / kdiff3 .exe

[ d i f f ]
tool = kdiff3
guitool = kdiff3

[ d i f f too l " kdiff3 "]
path = c : / Program Fi les / kdiff3 / kdiff3 .exe

155



Bibliography

[BaumgTM18] Andreas Baumgart. Toolbox Technische Mechanik. [Online; Stand
31. Mai 2018]. 2018. URL: https://elfe-platform.atlassian.
net/wiki/spaces/TTM/overview.

[ChProGit14] Scott Chacon and Ben Straub. Pro Git. 2. ed. 2014. URL: https:
//github.com/progit/progit2/releases/download/2.1.15/
progit.pdf.

[CharMap84] B. Char. “On the design and performance of the Maple system.”
In: Proc. of the Macsyma Users Conference (1984), pp. 199–219.

[ColeSMP81] C.A. Cole and Stephen Wolfram. “SMP: A Symbolic Manipulation
Program.” In: (1981).

[EmacsTut] GNU Emacs. Einführung in Emacs.

[EmacsMan12] GNU Emacs. GNU Emacs Manual 2.14 engl. 2012. URL: https:
//www.gnu.org/software/emacs/manual/pdf/emacs.pdf.

[eLispMan13] GNU Emacs. GNU Emacs Lisp Reference Manual 2.14 engl. 2013.
URL: https://www.gnu.org/software/emacs/manual/pdf/
elisp.pdf.

[FatemThe72] Richard J. Fateman. “Essais on Algebraic Simplification.” MAC TR-
95. Thesis. Harvard University, 1972. URL: http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.648.2190&rep=
rep1&type=pdf.

[FatemMGS79] Richard J. Fateman. “Macsyma’s General Simplifier.” In: Maxima
Users’ Converence 1979 (1979). URL: http://maxima.sourceforge.
net/misc/Fateman-Salz_Simplifier_Paper.pdf.

[FatemanRM89] Richard J. Fateman. “A review of Macsyma.” In: IEEE Transactions
on Knowledge and Data Engineering 1 (1 1989), pp. 133–145.
URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.92.6365&rank=1.

[FredmCME14] Tom Fredman. Computer Mathematics for the Engineer: Efficient
Computation and Symbolic Manipulation. 2014, p. 147. URL: http:
//users.abo.fi/tfredman/comp_math_2014.pdf.

[GitRef17] Git. Git Online Reference. [Online; Stand 28. November 2017].
2017. URL: https://git-scm.com/docs.

[GosperHP17] R. William Gosper. Homepage vita. [Online; Stand 18. Dezember
2017]. 2017. URL: http://gosper.org/bill.html.

156

https://elfe-platform.atlassian.net/wiki/spaces/TTM/overview
https://elfe-platform.atlassian.net/wiki/spaces/TTM/overview
https://github.com/progit/progit2/releases/download/2.1.15/progit.pdf
https://github.com/progit/progit2/releases/download/2.1.15/progit.pdf
https://github.com/progit/progit2/releases/download/2.1.15/progit.pdf
https://www.gnu.org/software/emacs/manual/pdf/emacs.pdf
https://www.gnu.org/software/emacs/manual/pdf/emacs.pdf
https://www.gnu.org/software/emacs/manual/pdf/elisp.pdf
https://www.gnu.org/software/emacs/manual/pdf/elisp.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.648.2190&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.648.2190&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.648.2190&rep=rep1&type=pdf
http://maxima.sourceforge.net/misc/Fateman-Salz_Simplifier_Paper.pdf
http://maxima.sourceforge.net/misc/Fateman-Salz_Simplifier_Paper.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.92.6365&rank=1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.92.6365&rank=1
http://users.abo.fi/tfredman/comp_math_2014.pdf
http://users.abo.fi/tfredman/comp_math_2014.pdf
https://git-scm.com/docs
http://gosper.org/bill.html


[HaagGM11] Wilhelm Haager. Grafiken mit Maxima. 2011, p. 35. URL: http:
//www.austromath.at/daten/maxima/zusatz/Grafiken_mit_

Maxima.pdf.

[HaagCAM14] Wilhelm Haager. Computeralgebra mit Maxima: Grundlagen der
Anwendung und Programmierung. Hanser, München, 2014, p. 317.

[HaagCEM17] Wilhelm Haager. Control Engineering with Maxima. 2017, p. 36.
URL: http://www.austromath.at/daten/maxima/zusatz/
Control_Engineering_with_Maxima.pdf.

[HammMTC13] Michael R. Hammock and J. Wilson Mixon. Microeconomic Theory
and Computation. Applying the Maxima Open-Source Computer
Algebra System. 1. Aufl. Springer, New York, 2013, p. 385.

[HanMC1-15] Zachary Hannan. wxMaxima for Calculus I. 2015, p. 158. URL:
https://wxmaximafor.files.wordpress.com/2015/06/wxmaxima_

for_calculus_i_cq.pdf.

[HanMC2-15] Zachary Hannan. wxMaxima for Calculus II. 2015, p. 176. URL:
https://wxmaximafor.files.wordpress.com/2015/06/wxmaxima_

for_calculus_ii_cq.pdf.

[iMaximaHP17] Yasuaki Honda. iMaxima and iMath Homepage. [Online; Stand 18.
November 2017]. 2017. URL: https://sites.google.com/site/
imaximaimath/.

[MaxiManD11] Dieter Kaiser. Maxima Manual 5.29 dt. 2011. URL: http://maxima.
sourceforge.net/docs/manual/de/maxima.html.

[LeydoldME11] Josef Leydold and Martin Petry. Introduction to Maxima for Eco-
nomics. 2011, p. 119. URL: http://statmath.wu.ac.at/~leydold/
maxima/MaximaSkript.pdf.

[MartFate71] William Martin and Richard Fateman. “The MACSYMA system.” In:
Proc. of the 2nd Symposium on Symbolic and Algebraic Manipu-
lation (1971), pp. 59–75.

[MaxiManE17] Maxima. Maxima Manual 5.41.0 engl. 2017. URL: http://maxima.
sourceforge.net/docs/manual/maxima.html.

[MosesMPH12] Joel Moses. “Macsyma: A personal history.” In: Journal of Symbolic
Computation 47 (2012), pp. 123–130.

[SbclMan17] SBCL. SBCL User Manual 1.4.2 engl. 2017. URL: http://www.
sbcl.org/manual/sbcl.pdf.

[SlimeMan15] Slime. Slime Manual 2.14 engl. 2015. URL: https://common-
lisp.net/project/slime/doc/slime.pdf.

[SouzaMaxB04] Paulo Ney de Souza. The Maxima Book. 2004, p. 155. URL: http:
//maxima.sourceforge.net/docs/maximabook/maximabook-
19-Sept-2004.pdf.

[StewenMT13] Roland Stewen. Standardaufgaben der Sekundarstufe I und II mit
Maxima lösen. 2013. URL: http://www.rvk-hagen.de/~stewen/
maxima_in_beispielen.pdf.

157

http://www.austromath.at/daten/maxima/zusatz/Grafiken_mit_Maxima.pdf
http://www.austromath.at/daten/maxima/zusatz/Grafiken_mit_Maxima.pdf
http://www.austromath.at/daten/maxima/zusatz/Grafiken_mit_Maxima.pdf
http://www.austromath.at/daten/maxima/zusatz/Control_Engineering_with_Maxima.pdf
http://www.austromath.at/daten/maxima/zusatz/Control_Engineering_with_Maxima.pdf
https://wxmaximafor.files.wordpress.com/2015/06/wxmaxima_for_calculus_i_cq.pdf
https://wxmaximafor.files.wordpress.com/2015/06/wxmaxima_for_calculus_i_cq.pdf
https://wxmaximafor.files.wordpress.com/2015/06/wxmaxima_for_calculus_ii_cq.pdf
https://wxmaximafor.files.wordpress.com/2015/06/wxmaxima_for_calculus_ii_cq.pdf
https://sites.google.com/site/imaximaimath/
https://sites.google.com/site/imaximaimath/
http://maxima.sourceforge.net/docs/manual/de/maxima.html
http://maxima.sourceforge.net/docs/manual/de/maxima.html
http://statmath.wu.ac.at/~leydold/maxima/MaximaSkript.pdf
http://statmath.wu.ac.at/~leydold/maxima/MaximaSkript.pdf
http://maxima.sourceforge.net/docs/manual/maxima.html
http://maxima.sourceforge.net/docs/manual/maxima.html
http://www.sbcl.org/manual/sbcl.pdf
http://www.sbcl.org/manual/sbcl.pdf
https://common-lisp.net/project/slime/doc/slime.pdf
https://common-lisp.net/project/slime/doc/slime.pdf
http://maxima.sourceforge.net/docs/maximabook/maximabook-19-Sept-2004.pdf
http://maxima.sourceforge.net/docs/maximabook/maximabook-19-Sept-2004.pdf
http://maxima.sourceforge.net/docs/maximabook/maximabook-19-Sept-2004.pdf
http://www.rvk-hagen.de/~stewen/maxima_in_beispielen.pdf
http://www.rvk-hagen.de/~stewen/maxima_in_beispielen.pdf


[TimbCMM16] Todd Keene Timberlake and J. Wilson Mixon. Classical Mechanics
with Maxima. 1. Aufl. Springer, New York, 2016, p. 258.

[UrrozMSE12] Gilberto Urroz. Maxima: Science and Engineering Applications.
self-published, 2012, p. 438.

[wikMacsy17] Wikipedia. Macsyma. [Online; Stand 26. September 2017]. 2017.
URL: https://en.wikipedia.org/w/index.php?title=Macsyma&
oldid=781784197.

[WoolMbE18] Edwin L. (Ted) Woollett. Maxima by Example. [Online; Stand 31.
Mai 2018]. 2018. URL: http://web.csulb.edu/~woollett/.

158

https://en.wikipedia.org/w/index.php?title=Macsyma&oldid=781784197
https://en.wikipedia.org/w/index.php?title=Macsyma&oldid=781784197
http://web.csulb.edu/~woollett/


Index

〈〉, 21
(), 21
„ 18, 22
., 77
/* ... */, 28
:, 25
::, 26
::=, 27
:=, 27, 99
;, 17
<, 24
<=, 24
=, 22
>, 24
>=, 24
?, 28
[], 21
#, 22
$, 17
%, 18, 19
%%, 19
%e, 148
%e_to_numlog, 63
%emode, 64
%enumer, 64
%gamma, 30
%i, 148
%in, 20
%on, 19
%pi, 148
%th, 19
_, 19
__, 20
^^, 77
{}, 22

activate, 50
activecontexts, 51
addcol, 86
additive, 55

addrow, 86
alphabetic, 28
anonymous function, 148
antisymmetric, 55
argument, 147, 148

actual, 148
formal, 148
optional, 101
required, 101

array, 147
ASCII, 28
ASDF, 129

UIOP, 129
assignment, 147

indirect, 147
assignment operator, 25

indirect, 26
assume, 58
at, 46
atom, 147

binding, 147, 150
block, 98
braces, 22
break command, 112

canonical rational expression (CRE), 147
case-sensitivity, 28
cell

wxMaxima, 16
character

alphabetic, 28
special, 28

Clisp, 119
col, 87
columnvector, 80
comment operator, 28
Common Lisp, 15
commutative, 55
complex, 53

159



Concminsec, 91
constant, 30, 53, 147

numerical, 147
symbolical, 147
system, 148

constantp, 53
context, 50
contexts, 50
covect, 80
CRE, 147
Cvect, 79
Cygwin, 119

deactivate, 51
declare, 56
declare (p, feature), 56
decreasing, 54
define, 99
Deg2rad, 91
Deg2radf, 91
Degdec2min, 91
Degmin2dec, 91
demoivre, 64
dereferencing, 150
diagmatrix, 88
distribute_over, 81
doallmxops, 85
documentation operator, 28
domxmxops, 85
domxnctimes, 85
doscmxops, 85
doscmxplus, 85
dot operator, 77
dot product, 82
dot0nscsimp, 78
dot0simp, 78
dot1simp, 78
dotassoc, 78
dotconstrules, 78
dotdistrib, 78
dotexptsimp, 78
dotident, 78
dotscrules, 78

eLisp, 123
Emacs, 123
.emacs init file, 125
equal, 23

equation, 148
evaluation, 150
even, 53
evenfun, 54
exp, 35–37, 39, 63
expression, 148

lambda, 149
ExtractCequations, 84

facts, 50
featurep, 57
features, 57
forget, 58
form, 151
fullmapl, 89
function, 148

anonymous, 148
array, 101, 148
lambda, 104, 148
macro, 149
memoizing, 101
ordinary, 100, 148
subscripted, 102, 148

function definition operator, 27

genmatrix, 88
Ghostscript, 130
Git, 132
GitHub, 133
Gnuplot, 16

ident, 88
identifier, 149

naming specifications, 28
imaginary, 53
iMaxima interface, 124
inchar, 17
increasing, 54
input tag, 17
integer, 53
integervalued, 54
invert, 90
irrational, 53
is, 22, 59

KDiff3, 133
killcontext, 51

lambda expression, 149

160



lambda function, 148
lassociative, 55
linear, 55
linenum, 17
Lisp, 15

Common, 15
inferior, 124

list, 21
listarith, 81
local, 99
logsimp, 63

MacLisp, 15
macro expansion, 28, 149
macro function, 149
macro function definition operator, 27
MakeCvect, 80
MakeRvect, 80
matrix, 86
matrix product, 90
matrix_element_add, 85
matrix_element_mult, 85
matrix_element_transpose, 85
matrixmap, 89
matrixp, 85
Maxima

installer, 119
repository, 120
tarball, 120

MaximaL, 15
MikTeX, 130
MinGW, 119
multiplicative, 55

Names
specifications, 28

naming conventions, 30
Negpospi, 92
newcontext, 50
nonarray, 54
noninteger, 53
nonscalar, 54
nonscalarp, 54
Notepad++, 120
notequal, 23

odd, 53
oddfun, 55

operator, 149
relational, 24

outative, 55
outchar, 17
output tag, 17

parameter, 148, 149
parentheses, 21
Pattern matching, 149
Pos2pi, 92
posfun, 54
powerseries, 68
product

commutative, 77
non-commutative, 77

prompt, 15, 16
properties, 56
property, 149, 150
props, 56
propvars, 56
PullFactorOut, 47
PullMinusIntoFraction, 47

Quicklisp, 128
quote-quote, 149

Rad2Deg, 91
Rad2Degf, 91
radcan, 63
rank, 90
rassociative, 55
rational, 53
ratmx, 86
real, 53
referencing, 150
remove, 56
REPL, 15
return value, 148, 150
row, 87
rule, 149
Rvect, 79

SBCL: Steel Bank Common Lisp, 119, 121
.sbclrc init-file, 122
scalar, 54
scalar product, 82
scalarmatrixp, 86
scalarp, 54

161



scope, 149
dynamic, 149
lexical, 149

sequential, 98
simplify_sum, 67
simpsum, 66
slime-connect, 124, 127
Slime: Superior interaction mode for Emacs,

124
SP, 82
sparse, 90
square brackets, 21
statement, 150

compound, 150
sublis, 27
submatrix, 87
subst

equation form, 27
sum, 66
supcontext, 50
symbol, 149

naming specifications, 28
symmetric, 55
syntax description operator, 21

taylor, 69
taylordepth, 71
tellsimp5, 61
tellsimpafter, 61
TeXstudio, 131
TP, 82
Transpose, 81
transpose, 81, 89

Uiop, 129
Unicode, 29

value, 150
return, 150

variable, 150
global, 150
local, 150
option, 150
system, 150
user, 150

Vdim, 81
vect_cross, 79
verbose, 31

VirtualBox, 119
Vlist, 81
Vnorm, 83
VP, 84

wxMaxima, 16
wxWidgets, 16

zeromatrix, 88

162


	Preface
	I Historical Evolution, Documentation
	Historical evolution
	Overview
	MAC, MACLisp and MACSyMa: The project at MIT
	Initialization and basic design concepts
	Major contributors
	The users' community

	Users' conferences and first competition
	The beginning of Mathematica
	Announcement of Maple

	Commercial licensing of Macsyma
	End of the development at MIT
	Symbolics, Inc. and Macsyma, Inc.

	Academic and US government licensing
	Berkeley Macsyma and DOE Macsyma
	William Schelter at the University of Texas

	GNU public licensing
	Maxima, the open source project since 2001

	Further reading

	Documentation
	Introduction
	Official documentation
	Manuals
	English current version
	German version from 2011


	External documentation
	Manuals
	Paulo Ney de Souza: The Maxima Book, 2004

	Tutorials
	Zachary Hannan: wxMaxima for Calculus I + II, 2015
	Wilhelm Haager: Computeralgebra mit Maxima: Grundlagen der Anwendung und Programmierung, 2014
	Wilhelm Haager: Grafiken mit Maxima, 2011
	Roland Stewen: Maxima in Beispielen, 2013

	Physics
	Edwin L. (Ted) Woollett: "Maxima by Example", 2018, and "Computational Physics with Maxima or R"
	Timberlake and Mixon: Classical Mechanics with Maxima, 2016

	Engineering
	Andreas Baumgart: Toolbox Technische Mechanik, 2018
	Wilhelm Haager: Control Engineering with Maxima, 2017
	Tom Fredman: Computer Mathematics for the Engineer, 2014
	Gilberto Urroz: Maxima: Science and Engineering Applications, 2012

	Economics
	Hammock and Mixon: Microeconomic Theory and Computation, 2013
	Leydold and Petry: Introduction to Maxima for Economics, 2011


	Articles and Papers
	Publications by Richard Fateman

	Comparison with other CAS
	Tom Fredman: Computer Mathematics for the Engineer, 2014

	Internal and program documentation
	Mailing list archives


	II Basic Operation
	Basics
	Introduction
	REPL: The read-evaluate-print loop
	Command line oriented vs. graphical user interfaces

	Input and output: using the Maxima REPL at the interactive prompt
	Input and output tags
	Statement termination operators
	Format for input and output
	One- and two-dimensional form
	Entering and display of special characters
	Display of multiplication operator

	Backward references
	System variables for output
	System variables for input


	Basic notation
	Syntax description operators
	Compound and separation operators
	Identity and relational operators
	Assignment operators
	Substitution of symbol by value in an expression
	Function and macro definition operators
	Function definition operator
	Macro function definition operator

	Miscellaneous operators

	Naming of identifiers
	Naming specifications
	Case sensitivity
	ASCII standard
	Unicode support
	Implementation notes


	Basic naming conventions
	System functions and variables
	System constants



	Input and output
	Input
	General option variables

	Output
	General option variables
	Variables generated by Maxima


	Plotting
	Batch Processing

	III Concepts of Symbolic Computation
	Data types and structures
	Number
	Introduction
	Types
	Predicate functions

	Integer and rational numbers
	Representation
	External
	Internal
	Canonical rational expression (CRE)


	Predicate functions
	Type conversion
	Automatic
	Manual


	Floating point numbers
	Ordinary floating point numbers
	Big floating point numbers

	Complex numbers
	Introduction
	Imaginary unit
	Internal representation
	Canonical order
	Standard form and polar form
	Simplification
	Properties
	Code
	Generic complex data type

	Standard form
	Polar form
	Complex conjugate
	Internal representation

	Predicate function


	Constant
	String
	Sharing of data
	List
	Matrix
	Structure
	Canonical rational expression (CRE)

	Expressions, operators
	Operators

	Evaluation
	Functions for evaluation

	Simplification
	Properties for simplification
	Functions for simplification

	Knowledge database system
	Facts and contexts: The general system
	User interface
	Introduction
	Functions and system variables

	Implementation
	Internal data structure
	Notes on the program code


	Values, properties and assumptions
	MaximaL Properties
	User interface
	Introduction
	System-declared properties
	User-declared properties
	Properties of variables
	Properties of functions

	Functions and system variables for properties
	User-defined properties

	Implementation

	Assumptions
	User interface
	Introduction
	Functions and system variables for assumptions

	Implementation


	Rules and patterns

	IV Basic Mathematical Computation
	Root, exponential and logarithmic functions
	Roots
	Vereinfachungen

	Exponential function
	Vereinfachungen


	Limits
	Sums, products and series
	Sums and products
	Sums
	Introduction
	Constructing, simplifying and evaluating sums
	Differentiation and integration of sums
	Limits of sums


	Series
	Power series
	Taylor and Laurent series expansion
	Single-variable form
	Multi-variable form
	Option 'asymp
	Option variables



	Differentiation
	Integration
	Solving Equations
	Differential Equations
	Polynomials
	Linear Algebra
	Introduction
	Operations in total or element by element
	Dot operator: non-commutative product
	Exponentiation
	Option variables for the dot product


	Vector
	Representations and their internal data structure
	Option variables for vectors
	Construct, transform and transpose a vector
	Dimension of a vector
	Indexing: refering to the elements of a vector
	Arithmetic operations and other MaximaL functions applicable to vectors
	Scalar product
	Tensor product
	Vector norm and normalization
	Vector equations
	Vector product
	Mixed product and double vector product

	Matrix
	Internal data structure
	matrixp

	Indexing: Refering to the elements of a matrix
	Option variables for matrices
	Construct a matrix
	Enter a matrix
	Append colums, rows or whole matrices
	Extract a submatrix, column or row
	Build special matrices
	Identity matrix
	Zero matrix
	Diagonal matrix

	Genmatrix

	Functions applied element by element
	Arithmetic operations and other MaximaL functions applicable to matrices
	Mapping arbitrary functions and operators

	Transposition
	Inversion
	Product
	Non-commutative matrix product

	Rank

	Determinant
	Option variables for determinant


	Analytic geometry
	Representation and transformation of angles
	Degrees   radiant
	Degrees decimal   min/sec
	 (-,) (0,2 ) 


	Coordinate systems
	Cartesian coordinates
	Polar coordinates
	Cylindrical coordinates
	Spherical coordinates
	General coordinate transformations


	V Advanced Mathematical Computation
	Tensors
	Numerical Computation

	VI Maxima Programming
	Compound statements
	Sequential and block
	Sequential
	Block

	Function
	Function definition
	Ordinary function
	Array function, memoizing function
	Subscripted function
	Function call

	Operator (function)
	Lambda function, anonymous function
	Macro function

	Program Flow

	VII User interfaces, Package libraries
	User interfaces
	Internal interfaces
	Command line Maxima
	wxMaxima
	iMaxima
	XMaxima
	TeXmacs
	GNUplot

	External interfaces
	Sage
	Python, Jupyter, Java, etc.


	Package libraries
	Internal share packages
	External user packages
	The Maxima exernal package manager


	VIII Maxima development
	MaximaL development
	Introduction
	Development with wxMaxima
	File management

	Error handling and debugging facilities in MaximaL
	Break commands
	Tracing
	Analyzing data structures

	MaximaL compilaton
	Providing and loading MaximaL packages

	Lisp Development
	MaximaL and Lisp interaction
	Maxima and Lisp
	MaximaL and Lisp identifiers
	Lisp modes under MaximaL
	Pure :lisp mode
	Maxima-like Lisp mode

	Executing Lisp code from within MaximaL
	Break command ":lisp"

	Calling MaximaL function from within Lisp

	Using the Emacs IDE
	Debugging
	Breaks
	Tracing
	Analyzing data structures

	Lisp compilation
	Providing and loading Lisp code
	Loading Lisp code
	Loading whole Lisp packages
	Modifying and loading individual system functions or files

	Committing Lisp code and rebuilding Maxima



	IX Developer's environment
	Emacs-based Maxima Lisp IDE
	Operating systems and shells
	Maxima
	Installer
	Building Maxima from tarball or repository

	External program editor
	Notepad++

	7zip
	SBCL: Steel Bank Common Lisp
	Installation
	Setup
	Set start directory
	Init file ".sbclrc"
	Starting sessions from the Windows console


	Emacs
	Overview
	Editor
	eLisp under Emacs
	Inferior Lisp under Emacs
	Maxima under Emacs
	Slime: Superior Interaction Mode for Emacs

	Installation and update
	Setup
	Set start directory
	Init file ".emacs"
	Customization
	Slime and Swank setup
	Starting sessions under Emacs


	Quicklisp
	Installation

	Slime
	Asdf/Uiop
	Installation

	Latex
	MikTeX
	Ghostscript
	TeXstudio, JabRef, etc.

	Linux and Linux-like environments
	Cygwin
	MinGW
	Linux in VirtualBox under Windows
	VirtualBox
	Linux



	Repository management: Git and GitHub
	Introduction
	General intention
	Git and our local repository
	KDiff3

	GitHub and our public repository

	Installation and Setup
	Git
	Installing Git
	Installing KDiff3
	Configuring Git

	GitHub
	Creating a GitHub account


	Cloning the Maxima repository
	Creating a mirror on the local computer
	Creating a mirror on GitHub

	Updating our repository
	Setting up the synchronization
	Pulling to the local computer from Sourceforge
	Pushing to the public repository at GitHub

	Working with the Repository
	Preamble
	Basic operations
	Committing, merging and rebasing our changes


	Building Maxima under Windows
	Introduction
	Lisp-only build
	Limitations of the official and enhanced version
	Recipe

	Building Maxima with Cygwin


	X Maxima's file structure, build system
	Maxima's file structure: repository, tarball, installer
	Maxima's build system

	XI Lisp program structure (model), control and data flow
	Lisp program structure
	Supported Lisps


	XII Appendices
	Glossary
	MaximaL terminology
	Lisp terminology

	SBCL init file .sbclrc
	Emacs init file .emacs
	Git configuration file ".gitconfig"
	Bibliography
	Index


