
CAS Maxima Workbook

Roland Salz

April 23, 2022

Vers. 1.0.1

This work is published under the terms of the

GNU GPL-3.0 License.

The source code is provided at GitHub under

RolandSalz / Maxima-Workbook.

Copyright © Roland Salz 2018-2022

No warranty whatsoever is given for the correctness or completeness of the
information provided.

Maple, Mathematica, Windows, and YouTube are registered trademarks.

This project is work in progress.
Comments and suggestions for improvement are welcome.

Roland Salz
Braunsberger Str. 26
D-44809 Bochum
mail@roland-salz.de

i

In some cases the objective is clear and the results are surprising.

Richard J. Fateman

ii

Preface

Maxima was developed from 1968-1982 at MIT (Massachusetts Institute of Tech-
nology) as the first comprehensive computer algebra system (CAS). Allowing not
only for numerical, but also symbolical computation it was used by the leading US
universities, by US Government institutions like the DOE, by the US Navy, or NASA.
Having been enhanced and improved ever since, now Maxima is free (GPL) soft-
ware and counts about 150.000 users worldwide. It is employed in education and
research by mathematicians, physicists, engineers, and economists, coping with
the major commercial CAS’ of today. Since 2000 the software is maintained by an
energetic group of volunteers called the Maxima team. The author wishes to thank
its kind and helpful members, in particular Dr. Robert Dodier, who is in charge of the
project, Gunter Königsmann, in charge of the frontend wxMaxima, as well as Prof.
Richard J. Fateman and Dr. Stavros Macrakis, who participated in the original MIT
project and have been contributing to Maxima ever since, for almost half a century
now.

The intention of the Maxima Workbook is to provide a new documentation of the
CAS Maxima. It is aimed at both users and developers. As a users’ manual it
contains a description of the Maxima language, here abbreviated MaximaL. User
functions written by the author are added wherever he felt that Maxima’s stan-
dard functionality is lacking them. As a developers’ manual it describes a possible
software development environment. Maxima is written in Common Lisp, so the in-
terrelation between MaximaL and Lisp is highlighted. We are convinced that there
is no clear distinction between a Maxima user and a developer. Any sophisticated
user tends to become a developer, too, and he can do so either on his own or by
joining the Maxima team.

iii

Contents

Preface iii

I Historical Evolution, Documentation 1

1 Historical evolution 2
1.1 Overview . 2
1.2 MAC, MACLisp and MACSyMa: The project at MIT 2

1.2.1 Initialization and basic design concepts 2
1.2.2 Major contributors . 3
1.2.3 The users’ community . 4

1.3 Users’ conferences and first competition 4
1.3.1 The beginning of Mathematica . 4
1.3.2 Announcement of Maple . 4

1.4 Commercial licensing of Macsyma . 5
1.4.1 End of the development at MIT . 5
1.4.2 Symbolics, Inc. and Macsyma, Inc. 5

1.5 Academic and US government licensing . 6
1.5.1 Berkeley Macsyma and DOE Macsyma 6
1.5.2 William Schelter at the University of Texas 7

1.6 GNU public licensing . 7
1.6.1 Maxima, the open source project since 2001 7

1.7 Further reading . 8

2 Documentation 9
2.1 Introduction . 9
2.2 Official documentation . 10

2.2.1 Manuals . 10
2.2.1.1 English current version . 10
2.2.1.2 German version from 2011 10

2.3 External documentation . 10
2.3.1 Manuals . 10

2.3.1.1 Paulo Ney de Souza: The Maxima Book, 2004 10
2.3.2 Tutorials . 10

2.3.2.1 Michel Talon: Rules and Patterns in Maxima, 2019 11
2.3.2.2 Jorge Alberto Calvo: Scientific Programming, 2018 . . . 11
2.3.2.3 Zachary Hannan: wxMaxima for Calculus I + II, 2015 . . 11
2.3.2.4 Wilhelm Haager: Computeralgebra mit Maxima: Grund-

lagen der Anwendung und Programmierung, 2014 . . . 11

iv

2.3.2.5 Wilhelm Haager: Grafiken mit Maxima, 2011 11
2.3.2.6 Roland Stewen: Maxima in Beispielen, 2013 11

2.3.3 Mathematics . 12
2.3.3.1 G. Jay Kerns: Multivariable Calculus with Maxima, 2009 12

2.3.4 Physics . 12
2.3.4.1 Edwin L. (Ted) Woollett: "Maxima by Example", 2018,

and "Computational Physics with Maxima or R" 12
2.3.4.2 Timberlake and Mixon: Classical Mechanics with Max-

ima, 2016 . 12
2.3.4.3 Viktor Toth: Tensor Manipulation in GPL Maxima 12

2.3.5 Engineering . 12
2.3.5.1 Andreas Baumgart: Toolbox Technische Mechanik, 2018 12
2.3.5.2 Wilhelm Haager: Control Engineering with Maxima, 2017 13
2.3.5.3 Tom Fredman: Computer Mathematics for the Engi-

neer, 2014 . 13
2.3.5.4 Gilberto Urroz: Maxima: Science and Engineering Ap-

plications, 2012 . 13
2.3.6 Economics . 13

2.3.6.1 Hammock and Mixon: Microeconomic Theory and Com-
putation, 2013 . 13

2.3.6.2 Leydold and Petry: Introduction to Maxima for Eco-
nomics, 2011 . 13

2.4 Articles and Papers . 13
2.4.1 Publications by Richard Fateman . 13

2.5 Comparison with other CAS . 14
2.5.1 Tom Fredman: Computer Mathematics for the Engineer, 2014 . 14

2.6 Internal and program documentation . 14
2.7 Mailing list archives . 14

II Basic Operation 15

3 Basics 16
3.1 Introduction . 16

3.1.1 REPL: The read-evaluate-print loop 16
3.1.2 Command line oriented vs. graphical user interfaces 17

3.2 Basic operation . 18
3.2.1 Executing an input line or cell . 18

3.3 Basic notation . 18
3.3.1 Output description and numbering conventions 18
3.3.2 Syntax description operators . 18
3.3.3 Compound and separation operators 18
3.3.4 Assignment operators . 19

3.3.4.1 Basic : . 19
3.3.4.2 Indirect :: . 20

3.3.5 Miscellaneous operators . 21
3.3.5.1 Comment . 21

v

3.3.5.2 Documentation reference . 21
3.4 Naming of identifiers . 22

3.4.1 MaximaL naming specifications . 22
3.4.1.1 Case sensitivity . 22
3.4.1.2 ASCII standard . 22
3.4.1.3 Unicode support . 22

3.4.1.3.1 Implementation notes 23
3.4.2 MaximaL naming conventions . 23

3.4.2.1 System functions and variables 23
3.4.2.2 System constants . 23

3.4.3 Correpondence of MaximaL and Lisp identifiers 24

4 Using the Maxima REPL at the interactive prompt 26
4.1 Input and output . 26

4.1.1 Input and output tags . 26
4.1.2 Multiplication operator . 27
4.1.3 Special characters . 27

4.2 Input . 27
4.2.0.1 One-dimensional form . 27

4.2.1 Statement termination operators . 27
4.2.2 System variables for backward references 28
4.2.3 General option variables . 29

4.3 Output . 29
4.3.0.1 One- and two-dimensional form 29
4.3.0.2 System variables for backward references 29

4.3.1 Functions for output . 30
4.3.2 General option variables . 30
4.3.3 Variables generated by Maxima . 30
4.3.4 Pretty print for wxMaxima . 30

5 Graphical representation of functions 32
5.1 Introduction . 32
5.2 Plot . 32

5.2.1 General . 32
5.2.1.1 Options, (user) standard options, and system standard

options . 32
5.2.1.2 Options for both 2D and 3D plots 33
5.2.1.3 Zooming the plot . 35

5.2.2 2D . 35
5.2.2.1 plot2d . 35

5.2.2.1.1 Explicit plot . 35
5.2.2.1.2 Parametric plot . 36
5.2.2.1.3 Discrete plot . 37

5.2.2.2 Implicit plot . 38
5.2.2.3 Contour plot . 39
5.2.2.4 Options for 2D . 39

5.2.3 3D . 40

vi

5.2.3.1 plot3d . 40
5.2.3.1.1 Explicit plot . 40
5.2.3.1.2 Parametric plot . 42

5.2.3.2 Coordinate transformations for 3D 42
5.2.3.2.1 Standard coordinate transformations 43
5.2.3.2.2 User-defined coordinate transformations 43

5.2.3.3 Options for 3D . 44
5.3 Draw . 44

5.3.1 Introduction . 44
5.3.2 General structure . 45

5.3.2.1 Using options . 45
5.3.2.1.1 General syntax . 45
5.3.2.1.2 Setting defaults for multiple scenes 45
5.3.2.1.3 Predefined personal sets of options 45
5.3.2.1.4 User_preamble . 46

5.3.2.1.4.1 Predefined personal user_preambles . . . 46
5.3.3 2D . 46

5.3.3.1 Explicit plot . 46
5.3.3.1.1 Piecewise defined function 46

5.3.3.2 Implicit plot . 47
5.3.3.3 Polar plot . 47

5.3.4 3D . 47
5.3.4.1 Explicit plot . 48
5.3.4.2 Implicit plot . 48

5.3.5 List of available options . 49

6 Batch Processing 50

III Concepts of Symbolic Computation 51

7 Data types and structures 52
7.1 Introduction . 52
7.2 Numbers . 52

7.2.1 Introduction . 52
7.2.1.1 Types . 52
7.2.1.2 Predicate functions . 52

7.2.2 Integer and rational numbers . 53
7.2.2.1 Representation . 53

7.2.2.1.1 External . 53
7.2.2.1.2 Internal . 53

7.2.2.1.2.1 Canonical rational expression (CRE) 53
7.2.2.2 Predicate functions . 53
7.2.2.3 Type conversion . 54

7.2.2.3.1 Automatic . 54
7.2.2.3.2 Manual . 54

7.2.3 Floating point numbers . 55
7.2.3.1 Ordinary floating point numbers 55

vii

7.2.3.2 Big floating point numbers 56
7.2.4 Complex numbers . 56

7.2.4.1 Introduction . 56
7.2.4.1.1 Imaginary unit . 56
7.2.4.1.2 Internal representation 57
7.2.4.1.3 Canonical order . 57
7.2.4.1.4 Simplification . 57
7.2.4.1.5 Properties . 58
7.2.4.1.6 Code . 58
7.2.4.1.7 Generic complex data type 58

7.2.4.2 Standard (rectangular) and polar form 58
7.2.4.2.1 Standard (rectangular) form 58
7.2.4.2.2 Polar coordinate form 59

7.2.4.3 Complex conjugate . 59
7.2.4.3.1 Internal representation 60

7.2.4.4 Predicate function . 60
7.3 Boolean values . 61
7.4 Constant . 61
7.5 Sharing of data . 61

8 List, matrix, structure 62
8.1 List . 62

8.1.1 makelist . 62
8.1.2 create_list . 62

8.2 Matrix . 62
8.3 Structure . 62

9 Expression 63
9.1 General definitions . 63
9.2 Forms of representation . 63

9.2.1 User visible form (UVF) . 63
9.2.2 General internal form (GIF) . 64
9.2.3 Canonical rational expression (CRE) 65

9.3 Canonical order . 65
9.4 Noun and verb . 66
9.5 Equation . 66
9.6 Reference to subexpression . 66

9.6.1 Identify and pick out subexpression 66
9.6.2 Substitute subexpression . 67

9.7 Manipulate expression . 67
9.7.1 Substitute pattern . 67

9.7.1.1 subst: substitute explicite pattern 67
9.7.1.2 ratsubst: substitute implicit mathematical pattern . . . 69

9.7.2 Box and rembox . 69

10 Operators 71
10.1 Defining and using operators . 71

10.1.1 Function notation of an operator . 71

viii

10.1.2 Miscellaneous . 71
10.2 System defined operators . 71

10.2.1 Identity operators and functions . 71
10.2.1.1 Equation operator . 71
10.2.1.2 Inequation operator . 72
10.2.1.3 equal, notequal . 72
10.2.1.4 is, is(a=b), is(equal(a,b)) . 74

10.2.2 Relational operators . 74
10.2.3 Logical (Boolean) operators . 75

11 Evaluation 76
11.1 Introduction to evaluation . 76

11.1.1 Stavros’ warning note about ev and quote-quote 76
11.2 Function ev . 77
11.3 Quote-quote operator ′ ′ . 79
11.4 Substitution . 79

11.4.1 Substituting values for variables . 80

12 Simplification 81
12.1 Properties for simplification . 81
12.2 General simplification . 81

12.2.1 Conversion between (complex) exponentials and circular/hy-
perbolic functions . 81

12.3 Trigonometric simplification . 82
12.4 Own simplification functions . 82

12.4.1 Apply2Part . 82
12.4.2 ChangeSign . 83
12.4.3 FactorTerms . 83
12.4.4 PullFactorOut . 84

13 Knowledge database system 86
13.1 Facts and contexts: The general system . 86

13.1.1 User interface . 86
13.1.1.1 Introduction . 86
13.1.1.2 Functions and system variables 88

13.1.2 Implementation . 89
13.1.2.1 Internal data structure . 89
13.1.2.2 Notes on the program code 89

13.2 Values, properties and assumptions . 89
13.3 MaximaL Properties . 90

13.3.1 Introduction . 90
13.3.2 System-declared properties . 90
13.3.3 User-declared properties . 91

13.3.3.1 Declaration, information, removal 91
13.3.3.2 Properties of variables . 91
13.3.3.3 Properties of functions . 93

13.3.4 User-defined properties . 94
13.3.5 Implementation . 95

ix

13.4 Assumptions . 95
13.4.1 User interface . 95

13.4.1.1 Introduction . 95
13.4.1.2 Functions and system variables for assumptions 96

13.4.2 Implementation . 98

14 Patterns and rules 99
14.1 Introduction . 99

14.1.1 What pattern matching is and how it works in Maxima 99
14.1.1.1 Pattern, pattern variable, pattern parameter, match . .100
14.1.1.2 No backtracking .101
14.1.1.3 The matching strategy in detail102

14.1.1.3.1 Peculiarities of addition and multiplication102
14.1.1.3.2 The anchor principle102

14.2 Matchdeclare .103
14.3 Defmatch and defrule .105

14.3.1 Example: Rewriting an oscillation function106
14.4 Tellsimp and tellsimpafter .109
14.5 Apply1, applyb1, apply2 .111

14.5.1 Example: substituting in an expression111
14.6 Rules, disprule, printprops, propvars .112
14.7 Killing and removing rules .112

IV Basic Mathematical Computation 113

15 Basic mathematical functions 114
15.1 Algebraic functions .114

15.1.1 Division with remainder, modulo .114
15.2 Combinatorial functions .114

15.2.1 Factorials .114
15.2.1.1 Functions and operators .114
15.2.1.2 Simplification .115

15.2.2 Binomials .115

16 Roots, exponential and logarithmic functions 116
16.1 Roots .116

16.1.1 Internal representation .116
16.1.2 Simplification .116
16.1.3 Roots of negative real or of complex numbers117

16.1.3.1 Computing all n complex roots117
16.2 Exponential function .117

16.2.1 Simplification .118

17 Polynomials 120
17.1 Polynomial division .120
17.2 Partial fraction decomposition .120

x

18 Solving Equations 122
18.1 The different solvers .122

18.1.1 Linsolve .122
18.1.2 Algsys .122
18.1.3 Solve .122
18.1.4 To_poly_solve, %solve .122

18.2 Special tasks and techniques .123
18.2.1 Eliminate variables from a system of equations123
18.2.2 Solving trigonometric or hyperbolic expressions124

18.2.2.1 Exponentialize and solve or eliminate124
18.2.2.2 To_poly and to_poly_solve or elim(_allbut)124

19 Linear Algebra 125
19.1 Introduction .125

19.1.1 Operation in total or element by element125
19.2 Dot operator: general non-commutative product125

19.2.1 Exponentiation .125
19.2.2 Option variables for the dot operator126

19.3 Vector .126
19.3.1 Representations and their internal data structure126
19.3.2 Option variables for vectors .127
19.3.3 Construct, transform and transpose a vector127
19.3.4 Dimension of a vector .129
19.3.5 Indexing: refering to the elements of a vector129
19.3.6 Arithmetic operations and other MaximaL functions applicable

to vectors .129
19.3.7 Scalar product .130

19.3.7.1 Dot operator .130
19.3.7.2 innerproduct, inprod, Inprod130
19.3.7.3 SP .131

19.3.8 Tensor product .131
19.3.9 Norm and normalization .132
19.3.10 Vector equations .133

19.3.10.1 Extract component equations from a vector equation .133
19.3.11 Vector product .133
19.3.12 Mixed product and double vector product133
19.3.13 Basis .134

19.4 Matrix .135
19.4.1 Internal data structure .135

19.4.1.1 matrixp .135
19.4.2 Indexing: Refering to the elements of a matrix135
19.4.3 Option variables for matrices .135
19.4.4 Build a matrix .136

19.4.4.1 Enter a matrix .137
19.4.4.2 Append colums, rows or whole matrices137
19.4.4.3 Extract a submatrix, column or row138
19.4.4.4 Build special matrices .138

xi

19.4.4.4.1 Identity matrix .138
19.4.4.4.2 Zero matrix .138
19.4.4.4.3 Diagonal matrix .138

19.4.4.5 Genmatrix .138
19.4.5 Transform between representations139

19.4.5.1 List of sublists -> matrix .139
19.4.5.2 Matrix -> list of column vectors139
19.4.5.3 List of column vectors -> list of sublists140

19.4.6 Functions applied element by element140
19.4.6.1 Arithmetic operations and other MaximaL functions ap-

plicable to matrices .140
19.4.6.2 Mapping arbitrary functions and operators140

19.4.7 Transposition .141
19.4.8 Inversion .141
19.4.9 Product .141

19.4.9.1 Non-commutative matrix product141
19.4.10 Rank .142
19.4.11 Gram-Schmidt procedure .142

19.4.11.1 Orthogonalize .142
19.4.11.2 Orthonormalize .142

19.4.12 Triangularize .142
19.4.13 Eigenvalue, eigenvector, diagonalize143

19.5 Determinant .144
19.5.1 Option variables for determinant .144

20 Limits 145

21 Sums, products and series 146
21.1 Sums and products .146

21.1.1 Sums .146
21.1.1.1 Introduction .146
21.1.1.2 Sum: consecutive indices .146

21.1.1.2.1 Simplification .147
21.1.1.2.1.1 Simpsum .147
21.1.1.2.1.2 Simplify_sum147

21.1.1.3 Lsum: selected indices .147
21.1.1.4 Nusum .148
21.1.1.5 Differentiating and integrating sums148
21.1.1.6 Limits of sums .148
21.1.1.7 Unsum: undoing a sum .149

21.1.2 Products .149
21.2 Series .149

21.2.1 Introduction .149
21.2.2 Sum or nusum with infinite upper bound149
21.2.3 Power series .150
21.2.4 Taylor and Laurent series expansion151

21.2.4.1 Single-variable form .151

xii

21.2.4.2 Multi-variable form .152
21.2.4.3 Option ’asymp .152
21.2.4.4 Option variables .153

22 Differentiation 154
22.1 Differentiation operator diff .154

22.1.1 Single-variable form .154
22.1.1.1 Evaluating Dpƒ at a point .154
22.1.1.2 Implicit differentiation .155

22.1.2 Multi-variable form .155
22.1.2.1 Partial derivatives .155

22.1.2.1.1 Hessian .155
22.1.2.2 Total derivative .156

22.1.2.2.1 Gradient .156
22.1.2.2.2 Jacobian .156

22.2 Evaluate expr at a point x with at .156
22.3 Define value c of expr at a point x with atvalue156
22.4 Evaluation flag diff .157
22.5 Noun form differentiation and calculus .157

22.5.1 Two ways to represent mathematical functions157
22.5.1.1 Variables and depends .157
22.5.1.2 MaximaL functions .158

22.5.2 Functional dependency with depends158
22.5.3 Using MaximaL functions .160

22.5.3.1 Distinction between function and variable160
22.5.3.2 Declared function .160
22.5.3.3 Undeclared function .160
22.5.3.4 Function call as the independent variable in diff160

22.5.4 Using derivative noun forms in diff161
22.5.4.1 Differentiating derivative noun forms161
22.5.4.2 Differentiation with respect to derivative noun form . . .161

22.5.5 Quoting and evaluating noun calculus forms162
22.6 Defining (partial) derivatives with gradef162

22.6.1 Show existing definitions .164
22.6.2 Remove definitions .164

22.7 Gradient .165

23 Integration 166

24 Differential Equations 167
24.1 Introduction .167

24.1.1 Overview .167
24.1.1.1 Analytical methods .167
24.1.1.2 Numerical methods .168
24.1.1.3 Graphical methods .168

24.2 Analytical solution .168
24.2.1 Ordinary differential equation (ODE) of 1. or 2. order168

24.2.1.1 Find general solution .168

xiii

24.2.1.1.1 ode2 .168
24.2.1.1.2 contrib_ode .169

24.2.1.2 Solve initial value problem (IVP)169
24.2.1.2.1 1. order ODE: ic1 .169
24.2.1.2.2 2. order ODE: ic2 .169

24.2.1.3 Solve boundary value problem (BVP): bc2171
24.2.2 System of linear ODEs: desolve .171

24.3 Numerical solution .173
24.3.1 Runge-Kutta: rk .173

24.4 Graphical estimate .175
24.4.1 Direction field .175

24.4.1.1 plotdf .175
24.4.1.2 drawdf .175

V Special applications 177

25 Analytic geometry 178
25.1 Representation and transformation of angles178

25.1.1 Bring angle into range .178
25.1.2 Degrees � radians .178
25.1.3 Degrees decimal � min/sec .178

26 Coordinate systems and transformations 180
26.1 Cartesian coordinates .180

26.1.1 Extended coordinates .180
26.1.2 Object transformation .180

26.1.2.1 Rotation .180
26.2 Polar coordinates .181
26.3 Cylindrical coordinates .181
26.4 Spherical coordinates .181
26.5 General orthogonal coordinates .181

27 Integral transformation 182
27.1 Laplace transformation .182

27.1.1 Inverse Laplace transform .183
27.1.2 Solving differential or convolution integral equations184

27.2 Fourier transformation .184

VI Advanced Mathematical Computation 185

28 Tensors 186
28.1 Kronecker delta .186

28.1.1 Generalized Kronecker delta .186
28.1.2 Levi-Civita symbol .186

28.2 Elementary second order tensor decomposition186
28.3 Evaluation of tensors and tensor products187

28.3.1 Tensor product of vectors .187

xiv

28.3.2 Tensor product of tensors .187
28.3.3 Symmetrization .187

29 Numerical Computation 188

30 Strings and string processing 189
30.1 Data type string .189
30.2 Transformation between expression and string189

30.2.1 Expression → string .190
30.2.2 String → expression .190

30.3 Display of strings .190
30.4 Manipulating strings .190
30.5 Package stringproc .191

VII Maxima Programming 192

31 Compound statements 193
31.1 Sequential and block .193

31.1.1 Sequential .193
31.1.2 Block .193

31.2 Function .194
31.2.1 Function definition .194

31.2.1.1 Defining the function .194
31.2.1.2 Showing the function definition195

31.2.2 Function call .196
31.2.2.1 Quoting a function call .196

31.2.3 Ordinary function .196
31.2.4 Array function, memoizing function197
31.2.5 Subscripted function .198
31.2.6 Constructing (and calling) a function198

31.2.6.1 Apply: construct and call .198
31.2.6.2 Funmake: construct only .199

31.3 Lambda function, anonymous function .200
31.4 Macro function .201

31.4.1 Macro function definition .202
31.4.2 Macro function expansion .202
31.4.3 Macro function call .202

32 Program Flow 203

VIII User interfaces, Package libraries 204

33 User interfaces 205
33.1 Internal interfaces .205

33.1.1 Command line Maxima .205
33.1.2 wxMaxima .205
33.1.3 iMaxima .205

xv

33.1.4 XMaxima .205
33.1.5 TeXmacs .205
33.1.6 GNUplot .205

33.2 External interfaces .205
33.2.1 Sage .205
33.2.2 Python, Jupyter, Java, etc. .205

34 Package libraries 206
34.1 Internal share packages .206
34.2 External user packages .206
34.3 The Maxima exernal package manager .206

IX Maxima development 207

35 MaximaL development 208
35.1 Introduction .208
35.2 Development with wxMaxima .209

35.2.1 File management .209
35.3 Error handling and debugging facilities in MaximaL209

35.3.1 Break commands .209
35.3.2 Tracing .210
35.3.3 Analyzing data structures .210

35.4 MaximaL compilaton .210
35.5 Providing and loading MaximaL packages210

36 Lisp Development 211
36.1 MaximaL and Lisp interaction .211

36.1.1 History of Maxima and Lisp .211
36.1.2 Accessing Maxima and Lisp functions and variables211

36.1.2.1 Executing Lisp code under MaximaL211
36.1.2.1.1 Switch to an interactive Lisp session temporarily211
36.1.2.1.2 Single-line Lisp mode212
36.1.2.1.3 Using Lisp forms directly in MaximaL212

36.1.2.2 Using MaximaL expressions within Lisp code213
36.1.2.2.1 Reading MaximaL expressions into Lisp213
36.1.2.2.2 Printing MaximaL expressions from Lisp213
36.1.2.2.3 Calling MaximaL functions from within Lisp . . .213

36.2 Using the Emacs IDE .214
36.3 Debugging .214

36.3.1 Breaks .214
36.3.2 Tracing .214
36.3.3 Analyzing data structures .214

36.4 Lisp compilation .214
36.5 Providing and loading Lisp code .214

36.5.1 Loading Lisp code .214
36.5.1.1 Loading whole Lisp packages214

xvi

36.5.1.2 Modifying and loading individual system functions or
files .214

36.5.2 Committing Lisp code and rebuilding Maxima215

X Developer’s environment 216

37 Emacs-based Maxima Lisp IDE 217
37.1 Operating systems and shells .217
37.2 Maxima .217

37.2.1 Installer .217
37.2.2 Building Maxima from tarball or repository218

37.3 External program editor .218
37.3.1 Notepad++ .218

37.4 7zip .218
37.5 SBCL: Steel Bank Common Lisp .219

37.5.1 Installation .219
37.5.2 Setup .219

37.5.2.1 Set start directory .219
37.5.2.2 Init file ".sbclrc" .220
37.5.2.3 Starting sessions from the Windows console221

37.6 Emacs .221
37.6.1 Overview .221

37.6.1.1 Editor .221
37.6.1.2 eLisp under Emacs .221
37.6.1.3 Inferior Lisp under Emacs .222
37.6.1.4 Maxima under Emacs .222
37.6.1.5 Slime: Superior Interaction Mode for Emacs222

37.6.2 Installation and update .222
37.6.3 Setup .222

37.6.3.1 Set start directory .222
37.6.3.2 Init file ".emacs" .223
37.6.3.3 Customization .225
37.6.3.4 Slime and Swank setup .225
37.6.3.5 Starting sessions under Emacs225

37.7 Quicklisp .226
37.7.1 Installation .226

37.8 Slime .227
37.9 Asdf/Uiop .227

37.9.1 Installation .227
37.10 Latex .228

37.10.1 MikTeX .228
37.10.2 Ghostscript .229
37.10.3 TeXstudio, JabRef, etc. .229

37.11 Linux and Linux-like environments .229
37.11.1 Cygwin .229
37.11.2 MinGW .229

xvii

37.11.3 Linux in VirtualBox under Windows229
37.11.3.1 VirtualBox .229
37.11.3.2 Linux .229

38 Repository management: Git and GitHub 230
38.1 Introduction .230

38.1.1 General intention .230
38.1.2 Git and our local repository .230

38.1.2.1 KDiff3 .231
38.1.3 GitHub and our public repository .231

38.2 Installation and Setup .231
38.2.1 Git .231

38.2.1.1 Installing Git .231
38.2.1.2 Installing KDiff3 .231
38.2.1.3 Configuring Git .232
38.2.1.4 Using Git .232

38.2.2 GitHub .232
38.2.2.1 Creating a GitHub account232

38.3 Cloning the Maxima repository .233
38.3.1 Creating a mirror on the local computer233
38.3.2 Creating a mirror on GitHub .233

38.4 Updating our repository .234
38.4.1 Setting up the synchronization .234
38.4.2 Pulling to the local computer from Sourceforge234
38.4.3 Pushing to the public repository at GitHub235

38.5 Working with the Repository .235
38.5.1 Preamble .235
38.5.2 Basic operations .236
38.5.3 Committing, merging and rebasing our changes236

39 Building Maxima under Windows 237
39.1 Introduction .237
39.2 Lisp-only build .237

39.2.1 Limitations of the official and enhanced version237
39.2.2 Recipe .238

39.3 Building Maxima with Cygwin .238

XI Maxima’s file structure, build system 239

40 Maxima’s file structure: repository, tarball, installer 240

41 Maxima’s build system 241

XII Lisp program structure (model), control and data flow 242

42 Lisp program structure 243
42.1 Supported Lisps .243

xviii

XIII Appendices 244

A Glossary 245
A.1 MaximaL terminology .245
A.2 Lisp terminology .249

B SBCL init file .sbclrc 250

C Emacs init file .emacs 251

D Git configuration file ".gitconfig" 253

E blanco 254

Bibliography 255

Index 257

xix

Part I

Historical Evolution,
Documentation

1

Chapter 1

Historical evolution

1.1 Overview

The computer algebra system Maxima was developed, originally under the name
Macsyma, from 1968 until 1982 at Massachusetts Institute of Technology (MIT) as
part of project MAC. Together with Reduce it belongs to the first comprehensive
CAS systems and was based on the most modern computational algorithms of the
time. Macsyma was written in MacLisp, a pre-Common Lisp which had also been
developed by MIT.

In 1982 the project was split. An exclusive commercial license was given to a com-
pany named Symbolics, Inc., created by Macsyma users and former MIT developers,
while at the same time the United States Department of Energy (DOE) obtained a
license for the source code of Macsyma to be made available (for a considerable
fee) to academic and government institutions. This version is known as DOE Mac-
syma. When Symbolics got into financial problems, enhancement and support for
the commercial Macsyma license was separated to a company named Macsyma,
Inc., which continued development until 1999. Financial failure of this company has
left the enhanced source code unavailable ever since.

From 1982 until his death in 2001, William Schelter, professor of mathematics at
the University of Texas, maintained a copy of DOE Macsyma. He ported Macsyma
from MacLisp to Common Lisp. In 1999 he requested and received permission from
the Department of Energy to publish the source code on the Internet under a GNU
public license. In 2000 he initiated the open source software project at Sourceforge,
where it has remained until today. In order to avoid legal conflicts with the still
existing Macsyma trademark, the open source project was named Maxima. Since
then, Maxima has been continuously improved.

1.2 MAC, MACLisp and MACSyMa: The project at MIT

1.2.1 Initialization and basic design concepts

While William A. Martin (1938-1981) had studied at MIT since 1960 and worked on [MosesMPH12]

his doctoral thesis under the computer science pioneer Marvin Minsky (1927–2016)
since 1962, Joel Moses (born 1941) entered MIT in 1963 and also took up a doctor-
ate under Marvin Minsky. After both having pursued various other projects in the

2

area of artificial intelligence and symbolic computation, and after having completed
their respective theses in 1967 (Joel Moses’ thesis is entitled Symbolic integration),
while staying at MIT they joined their efforts and initialized, together with Carl En-
gelman, the development of a computer algebra system called Macsyma, standing
for project MAC’s SYmbolic MAnipulator. It was meant to be a combination of all
their previous projects, an interactive system for solving symbolic mathematical
problems designed for engineers, scientists and mathematicians, with the capabil-
ity of two-dimensional display of formulas on the screen, an interpreter for step-by-
step processing, and using the latest and most sophisticated algorithms in symbolic
computation available at the time.

Since both liked Lisp for its short and elegant notation and the universal and flexible
list structure, and since they had used it in most of their previous projects, Lisp was
going to be the language in which Macsyma was to be written.

Another conceptual decision based on previous experiences was to use multiple
internal representations for mathematical expressions. Apart from the general rep-
resentation there would be a rational function representation for manipulating ra-
tios of polynomials in multiple variables, and another representation for power and
Taylor series. These different representations can still be found in today’s Maxima.

Bill Martin led the project. But Carl Engelman and his staff already left in 1969.

In 1971 the project was presented at a Symposium on Symbolic and Algebraic Ma- [MartFate71]

nipulation by William Martin and Richard Fateman (born 1946), who had joined the
project right from the beginning. He was a graduate student in the Division of En-
gineering and Applied Physics of Harvard, (1966-71) but found an opportunity to
pursue research down the road in Cambridge, at MIT. He received his Ph.D. from
Harvard, but de facto he had contributed to the Macsyma project. His thesis from
1971 on Algebraic Simplification describes various components of Macsyma which [FatemThe72]

he had implemented, in particular the simplifier and the pattern matcher. From
1971-1974 he taught at MIT (in Mathematics), before he left for University of Cal-
ifornia at Berkeley, in Computer Science. The Macsyma project now comprised a
considerable number of doctoral students and post-doc staff members. But soon
after this presentation William Martin left the project, too, which was then led by
Joel Moses.

1.2.2 Major contributors

Major contributors to the Macsyma software were:

William A. Martin (front end, expression display, polynomial arithmetic) and Joel [wikMacsy17]

Moses (simplifier, indefinite integration: heuristic/Risch). Some code came from
earlier work, notably Knut Korsvold’s simplifier. Later major contributors to the core
mathematics engine were:[citation needed] Yannis Avgoustis (special functions),
David Barton (solving algebraic systems of equations), Richard Bogen (special func-
tions), Bill Dubuque (indefinite integration, limits, power series, number theory,
special functions, functional equations, pattern matching, sign queries, Gröbner,
TriangSys), Richard Fateman (rational functions, pattern matching, arbitrary pre-
cision floating-point), Michael Genesereth (comparison, knowledge database), Jeff

3

Golden (simplifier, language, system), R. W. Gosper (definite summation, special
functions, simplification, number theory), Carl Hoffman (general simplifier, macros,
non-commutative simplifier, ports to Multics and LispM, system, visual equation ed-
itor), Charles Karney (plotting), John Kulp, Ed Lafferty (ODE solution, special func-
tions), Stavros Macrakis (real/imaginary parts, compiler, system), Richard Pavelle
(indicial tensor calculus, general relativity package, ordinary and partial differential
equations), David A. Spear (Gröbner), Barry Trager (algebraic integration, factoring,
Gröbner), Paul Wang (polynomial factorization and GCD, complex numbers, limits,
definite integration, Fortran and LaTeX code generation), David Y. Y. Yun (polynomial
GCDs), Gail Zacharias (Gröbner) and Rich Zippel (power series, polynomial factor-
ization, number theory, combinatorics).

1.2.3 The users’ community

A nationwide Macsyma users community, to which belonged, among others, DOE,
NASA and the US Navy, but also companies like Eastman Kodak, had evolved in
parallel to the ongoing development of the system at MIT, and they jointly used
computers and system resources provided by ARPA and ARPANET. Significant funds
for the project came from this user group, too. The Macsyma software had grown so
large that always the newest version of a PDP-10 computer from DEC was needed
to host it. Eventually, when DEC took a decision to change to the VAX architecture,
the whole Macsyma project had to be turned over to follow it.

1.3 Users’ conferences and first competition

In 1977 Richard Fateman, meanwhile professor of Computer Science in Berkeley,
organized the first one of what would become altogether three Macsyma Users’
Conferences.

1.3.1 The beginning of Mathematica

Stephen Wolfram, a physicist and former Macsyma user from Cal Tech, designed [ColeSMP81]

and presented his own commercial computer algebra system, called SMP, in 1981.
This eventually led to the development of Mathematica.

In May, 1993 Prof. Fateman gave a guest lecture at Stanford’s CS50 introductory [ytFatemM93]

course in computer science held by Nancy Blachman. It contains a review of the
Mathematica system and its underlying language as of 1993 including some illus-
trations of pitfalls in the design of such systems and Mathematica in particular, as
well as comments on the use of Mathematica for introductory programming and
system building. This lecture is now on YouTube.

1.3.2 Announcement of Maple

At the 3. Macsyma Users’ Conference, which took place 1984 in Schenectady, [CharMap84]

N.Y., home of General Electric Research Labs, another new and commercial CAS
project, called Maple, was presented. Although strongly influence by Macsyma, it
aimed at increasing the speed of computation and at the same time at reducing

4

system memory size, so that it could operate on smaller and cheaper hardware and
eventually on personal computers.

1.4 Commercial licensing of Macsyma

1.4.1 End of the development at MIT

In 1981 the idea came up among Macsyma developers at MIT to form a company
which should take over development of Macsyma and market the product com-
mercially. This was possible due to the Bayh-Dole Act having recently passed the
Congress. It allowed universities under certain conditions to sell licenses for their
developments funded by the government to companies. The intention was to run
the CAS on VAX-like machines and possibly smaller computers. Joel Moses, who
had led the project since 1971, became increasingly engaged in an administrative
career at MIT (he was provost from 1995-1998), leaving him little time to continue
heading the Macsyma project. In 1982 the development of Macsyma at MIT had
come to an end.

1.4.2 Symbolics, Inc. and Macsyma, Inc.

Symbolics, Inc., a company that had been founded by former MIT developers to
produce LISP-based hardware, the so-called lisp machines, received an exclusive
license for the Macsyma software in 1982. While the product started well on VAX-
machines, the development of Macsyma for use on personal computers fell way
behind the competitive commercial systems Maple and Mathematica.

Lisp-machines did not become the commercial success that had been expected,
so Symbolics did not have the financial resources to continue the development of
Macsyma. In 1992 Symbolics sold the license to a company called Macsyma, Inc.
which continued to develop Macsyma until 1999. The last version of Macsyma is still
for sale on the INTERNET (as of 2017) for Microsoft’s Windows XP operating system.
Later versions of Windows, however, are not supported. Macsyma for Linux is not
available at all any more.

Nevertheless, mainly due to the work of a number of former MIT developers, like
Jeff and Ellen Golden or Bill Gosper, who had switched to work for Symbolics, the [GosperHP17]

computational capabilities of Macsyma were significantly enhanced during this pe-
riod of commercial development from 1982-1999. These enhancements are not
included in present Maxima, which is based on another branch of Macsyma devel-
opment, split off in 1982 under the name of DOE Macsyma. If these enhancements
from the Symbolics era were ever made available to Maxima in the future and could
be integrated into the present system, maybe at least in parts, this could certainly
result in a major improvement for the open source project.

5

1.5 Academic and US government licensing

1.5.1 Berkeley Macsyma and DOE Macsyma

Richard Fateman had gone to Berkeley already in 1974. He continued to work on
computers at MIT via ARPANET, predecessor of the Internet. He was interested
in making Macsyma run on computers with larger virtual memory than the exist-
ing PDP-10, and when the VAX-11/780 was available he fought for Berkeley to get
one. This achieved, his idea was to write a Lisp compiler compatible with MacLisp
and which would run on Berkley UNIX. Franz Lisp was created, the name having
been invented spontaneously for its resemblance with Franz Liszt; it was still a
pre-Common Lisp. With these resources rapidly developed, Fateman had in mind
to share usage of Macsyma with other universities around. But MIT resisted these
efforts.

UC Berkeley finally reached an agreement with MIT to be allowed to distribute
copies of Macsyma running on VAX UNIX. But this agreement could be recalled
by MIT when a commercial license was to be sold by them, which eventually was
done to Symbolics. About 50 copies of Macsyma were running on VAX systems at
the time. But Fateman wanted to go on and ported Franz Lisp to Motorola 68000,
so that Macsyma could run on prototypes of workstations by Sun Microsystems.

Around 1981, when the discussion about commercial licensing of Macsyma became
more and more intense at MIT, Richard Fateman and a number of other Macsyma
users asked the United States Department of Energy (DOE), one of the main and
therefore influential sponsors of the Macsyma project, for help to make MIT allow
the software to become available for free to everyone. What he had in mind was a
kind of Berkeley BSD license, which does not, like a GNU general public license, pre-
vent commercial exploitation of the software. On the contrary, such a license, which
can be considered really free, would not only allow everyone to use and enhance
the software, but also to market their product. This license, for instance, allowed
Berkeley students to launch startups with software developed at their school.

Finally, in 1982, at the same time when the commercial license was sold to Sym-
bolics, DOE obtained a copy of the source code from MIT to be kept in their library.
It was not made available to the public, its use remained restricted to academic
and US government institutions. For a considerable fee these institutions could ob-
tain the source code for there own development and use, but without the right to
release it to others. This version of Macsyma is known as DOE Macsyma.

The version of the Macsyma source code given to DOE had been recently ported
from MacLisp to NIL, New Implementation of Lisp, another MIT development. Unfor-
tunately, this porting was not really complete, MIT never finalized it, and the DOE
version was substantially broken. All academic and government users fought with
these defects. Some revisions were exchanged or even passed back to DOE, but
basically everyone was left alone with having to find and fix the bugs.

6

1.5.2 William Schelter at the University of Texas

From 1982 until his sudden death in 2001 during a journey in Russia, William Schel-
ter, professor of mathematics at the University of Texas in Austin, maintained one
of these copies of DOE Macsyma. He ported Macsyma from MacLisp to Common
Lisp, the Lisp standard which had been established in the meantime. Schelter, who
was a very prolific programmer and a fine person, added major enhancements to
DOE Macsyma.

1.6 GNU public licensing

In 1999, in the same year when development of commercial Macsyma terminated,
DOE was about to close the NESC (National Energy Software Center), the library
which distributed the DOE Macsyma source code. Before it was closed, William
Schelter asked if he could distribute DOE Macsyma under GPL. No one else seemed
to care for this software anymore and neither did DOE. Schelter received permission
from the Department of Energy to publish the source code of DOE Macsyma under
a GNU public license. In 2000 he initiated the open source software project at
Sourceforge, where it has remained until today. In order to avoid legal conflicts with
the still existing Macsyma trademark, the open source project was named Maxima.

Since 1982, the source code of DOE Macsyma had remained completely separated
from the commercial version of Macsyma. So the code of Maxima does not include
any of the enhancements, revisions or bug fixings made by Symbolics and Macsyma
Inc. between 1982 and 1999.

1.6.1 Maxima, the open source project since 2001

Judging from the number of downloads, Maxima today has about 150.000 users
worldwide. New releases come about twice a year. Installers are provided for Linux
and Windows (32 and 64 bit versions), but Maxima can also be built by anyone
directly from the source code, on Linux, Windows or Macintosh.

An enthusiastic group of volunteers, called the Maxima team and led by Dr. Robert
Dodier from Portland, Oregon, today maintains Maxima. Among the Lisp develop-
ers are Dr. Raymond Toy, Barton Willis (Prof. of Mathematics, University of Ne-
braska, Kearney), Kris Katterjohn, David Billinghurst and Volker van Nek. Gunter
Königsmann (Erlangen, Germany) maintains the most popular user interface, wx-
Maxima, developed by Andrej Vodopivec (Slovenia). Wolfgang Dautermann (Graz,
Austria) created a cross compiling mechanism for the Windows installers. Yasuaki
Honda (Japan) developed the iMaxima interface running under Emacs. Mario Ro-
driguez (Spain) integrated and maintains the plotting software, Dr. Viktor T. Toth
(Canada) is in charge of new releases and maintains the tensor packages. Jaime
Villate (Prof. of Physics, University of Porto, Portugal), contributed to the graphical
interface Xmaxima and designed the Maxima homepage. Many more could be men-
tioned who contribute to Maxima in one way or the other, for instance by writing
and providing external software packages. For example, Dr. Dimiter Prodanov (Bel-
gium) recently developed a package for Clifford algebras, Serge de Marre, also from
Belgium, a package for solving Diophantine equations. Edwin (Ted) Woollett (Prof.

7

of Physics, California State University, Long Beach) has spent years writing a highly
sophisticated and free Maxima tutorial for applications in Physics, called Maxima by
example. Richard J. Fateman (Prof. of Computer Science, University of California at
Berkeley) and Dr. Stavros Macrakis (Cambridge, Ma.), who already were chief de-
signers and major contributors to the Macsyma software at MIT, are both still with
the Maxima project today, giving valuable advice to both developers and users on
Maxima’s principal communication channel, the mailing list at Sourceforge.

1.7 Further reading

A review of Macsyma is a long article by Richard Fateman in IEEE Transactions on [FatemanRM89]

Knowledge and Data Engineering from 1989, available as free PDF. Fateman writes
in the abstract:

"We review the successes and failures of the Macsyma algebraic manipulation sys-
tem from the point of view of one of the original contributors. We provide a ret-
rospective examination of some of the controversial ideas that worked, and some
that did not. We consider input/output, language semantics, data types, pattern
matching, knowledge-adjunction, mathematical semantics, the user community,
and software engineering. We also comment on the porting of this system to a vari-
ety of computing systems, and possible future directions for algebraic manipulation
system-building."

What better inspiration for the following chapters can we wish for?

8

Chapter 2

Documentation

2.1 Introduction

It is our feeling that Maxima’s documentation can be improved. Both as a user
and even more as a developer one would like to have much more information at
hand than what the official Maxima manual, the other internal documentation that
comes with the Maxima installation, and the comments in Maxima’s program code
provide.

Especially in the beginning, the user will often not understand the information in
the manual easily. It contains a concise description of the Maxima language, here
abbreviated MaximaL, but primarily as a reference directed to the very experienced
user. It takes years to really understand and efficiently use a CAS. The beginner will
need further explanation of all the implications of the condensed information from
the official manual, more examples and a better understanding of the overall struc-
ture of the complex Maxima language (it comprises of thousands (!) of different
functions and option variables).

Numerous external tutorials, some of them generally covering Maxima’s mathemat-
ical capabilities, others restricted to applications of Maxima in the most important
fields, such as Physics, Engineering or Economics, have been written and are of
immense help for the beginner. Some of them are so comprehensive that they
come close to a reference manual. Our intention is not to write a tutorial, but a
manual, directed to a broader audience than the existing one, ranging from the still
unexperienced user to the Lisp developer.

A considerable number of user interfaces have been developed, and the user will
be quite lost about judging which one will best fit his needs.

Users and developers wanting to build Maxima themselves will find little documen-
tation of the build process, especially if they want to work under Windows.

Even for an experienced Lisp developer the structure of Maxima’s huge amount of
program code will not be easy to understand. There is almost no documentation
besides the program code, and this code itself is poorly documented, having been
revised by many hands over many years. There are inconsistencies, forgotten sec-
tions, relics of ancient Lisp dialects and lots of bugs. The complicated process of
Maxima’s dynamic scoping and the information flow within the running system are

9

hard to keep track of. Very few of Maxima’s few Lisp developers really overlook it
completely.

This obvious lack of documentation motivated us to start the Maxima Workbook
project. But before diving into it, let us get an overview about exactly what sources
and what extend of information we have available already. As a first reference, the
user should consult the bibliography contained in Maxima’s official documentation
page.

2.2 Official documentation

2.2.1 Manuals

2.2.1.1 English current version

The official Maxima manual in English is updated with each new Maxima release. It [MaxiManE17]

is included in HTML format, as PDF and as the online help in each Maxima installer
or tarball. It can also be built when building Maxima from source code. Our Maxima
Workbook is primarily based on this documentation.

2.2.1.2 German version from 2011

A German version of the manual exists. It is also distributed with the Maxima in- [MaxiManD11]

stallers and tarballs. Note, however, that it reflects the status of release 5.29, it is
currently not being updated. Compared to the English version, it contains numer-
ous introductins, additional comments and examples and a much more complete
index. It was translated/written by Dieter Kaiser in 2011. Many of his amendments
and improvements have been incorporated in the Maxima Workbook. The author
wishes to express his thanks to Dieter Kaiser for his pioneer work in improving the
Maxima documentation.

2.3 External documentation

2.3.1 Manuals

2.3.1.1 Paulo Ney de Souza: The Maxima Book, 2004

Paulo Ney de Souza has written, together with Richard Fateman, Joel Moses and Cliff [SouzaMaxB04]

Yapp, one of the most comprehensive Maxima manuals. Unfortunately, the project
has not been finalized and is no longer updated, the last version dating from 2004.
In particular, the Maxima Book contains detailed information about different user
interfaces, including installation instructions.

2.3.2 Tutorials

The tutorials presented first are those not focused on a specific field of application.
The order is according to their date of publication.

10

http://maxima.sourceforge.net/documentation.html
http://maxima.sourceforge.net/documentation.html

2.3.2.1 Michel Talon: Rules and Patterns in Maxima, 2019

This tutorial of some 20 pages facilitates access to understanding how to use Max- [TalonRP19]

ima’s pattern matching facilities, which remains difficult from reading the section
from Maxima’s manual alone. It is particularly useful for someone who furthermore
wants to understand how the pattern matcher works internally. Hints to example
applications from mathematics and physics are given at the end. Altogether, a very
substantial work written by someone deeply interested in Maxima.

2.3.2.2 Jorge Alberto Calvo: Scientific Programming, 2018

Scientific Programming. Numeric, Symbolic, and Graphical Computing with Maxima [CalvoSP18]

uses Maxima to illustrate some methods of numeric and symbolic computation for
application in mathematically oriented sciences, and at the same time the general
use of computer programming.

2.3.2.3 Zachary Hannan: wxMaxima for Calculus I + II, 2015

This tutorial by Zachary Hannan from Solano Community College, Vallejo, Ca., al- [HanMC1-15]
[HanMC2-15]though having wxMaxima in its title, really covers the CAS Maxima, viewed through

the wxMaxima user interface. Two volumes of about 160 pages each cover basic
methods of using Maxima to solve problems from Calculus. Volumes on other fields
of application are to follow.

2.3.2.4 Wilhelm Haager: Computeralgebra mit Maxima: Grundlagen der
Anwendung und Programmierung, 2014

Wilhelm Haager’s major work on the CAS Maxima was published 2014 in German [HaagCAM14]

at Hanser Verlag. This tutorial has over 300 pages and comes close to a compre-
hensive manual of the Maxima language. For example, rule-based programming is
coverd in a separate chapter, data transfer to other programs and the implications
of Lisp are treated. A very valuable publications that one would like to see available
in English, too.

2.3.2.5 Wilhelm Haager: Grafiken mit Maxima, 2011

A tutorial in German on graphics with Maxima of about 35 pages, in the typical, [HaagGM11]

well-edited Haager style.

2.3.2.6 Roland Stewen: Maxima in Beispielen, 2013

Roland Stewen from Rahel Varnhagen Kolleg in Hagen, Germany, has written a [StewenMT13]

Maxima tutorial in German of some 400 pages primarily addressed to highschool
students. It is available online in html format and can be downloaded as PDF. The
document is clearly written, well structured, contains a detailed table of content,
an index, a bibligraphy, and can be highly recommended for the intended purpose.

11

2.3.3 Mathematics

2.3.3.1 G. Jay Kerns: Multivariable Calculus with Maxima, 2009

Originating from material the author compiled for a university course in Calculus, [KernsMVC09]

this document of some 50 pages grew up to become a real introduction to Maxima.
A concise and very illustrative work for the undergraduate level.

2.3.4 Physics

2.3.4.1 Edwin L. (Ted) Woollett: "Maxima by Example", 2018, and "Com-
putational Physics with Maxima or R"

This tutorial by Edwin L. (Ted) Woollett, Prof. Emeritus of Physics and Astronomy at [WoolMbE18]

California State University (CSULB), is free online-material and certainly one of the
best and most inspiring tutorials around, and Ted’s work is still continuing! Here
we find valuable advice and many examples from the viewpoint of a computational
physicist, and some impressive, highly sophisticated worked-out applications.

2.3.4.2 Timberlake and Mixon: Classical Mechanics with Maxima, 2016

In their series Undergraduate Lecture Notes in Physics, Springer in 2016 published [TimbCMM16]

Classical Mechanics with Maxima, written by Todd Keene Timberlake, Prof. of Physics
and Astronomy, and J. Wilson Mixon, Jr., Prof. Emeritus of Economics, both at Berry
College, Mount Berry, Georgia. This elegantly written, professionally styled and
therefore well readable book contains on some 260 pages applications of Maxima
to problems from classical mechanics at the undergraduate level. After opening
the view to a wide range of problems for symbolical computation from the field of
Newtonian mechanics, the book focuses on the programming facilities inherent in
the Maxima language and on the methodology and techniques of how to transform
sophisticated algorithms for the symbolical or numerical solution of problems from
mathematical physics into Maxima. Graphical representations of the data obtained
are always in the center of interest, too, and throughout the book vividly illustrate
the results from computations.

2.3.4.3 Viktor Toth: Tensor Manipulation in GPL Maxima

Written by Viktor T. Toth, theoretical physicist, member of the Maxima team, and [TothTenM08]

responsible for maintaining the tensor packages, this highly recommended paper
published in arxiv gives a comprehensive description of the present abilities of Max-
ima’s tensor packages for applications in physics, in particular general relativity.

2.3.5 Engineering

2.3.5.1 Andreas Baumgart: Toolbox Technische Mechanik, 2018

Andreas Baumgart from Hochschule für Angewandte Wissenschaften, Hamburg, [BaumgTM18]

has created an extensive and very well designed internet site for illustrating how
problems in engineering mechanics can be solved with Maxima and Matlab. The
site is in German.

12

2.3.5.2 Wilhelm Haager: Control Engineering with Maxima, 2017

This well-illustrated tutorial of some 35 pages has been written by Wilhelm Haager [HaagCEM17]

from HTL St. Pölten, Austria. It shows applications of Maxima in the field of Electrical
Engineering.

2.3.5.3 Tom Fredman: Computer Mathematics for the Engineer, 2014

A free tutorial of 135 pages covering both Maxima and Octave has been written [FredmCME14]

by Tom Fredman of Abo Akademi University, Finnland for applications in Engineer-
ing. Its bibliography contains a number of other sources for Maxima applied to
engineering.

2.3.5.4 Gilberto Urroz: Maxima: Science and Engineering Applications,
2012

The extensive tutorial by Gilberto Urroz used to be available online for free, but now [UrrozMSE12]

comes as a self-published paperback for a very moderate price, considering its size
of 438 pages. It contains a large number of applications in engineering.

2.3.6 Economics

2.3.6.1 Hammock and Mixon: Microeconomic Theory and Computation,
2013

J. Wilson Mixon, Jr., Professor Emeritus of Economics at Berry College, Mount Berry, [HammMTC13]

Georgia, published Microeconomic Theory and Computation. Applying the Maxima
Open-Source Computer Algebra System together with Michael R. Hammock in 2013
with Springer. This extensive work of about 385 pages shows how Maxima can be
applied to solve a wide variety of symbolical and numerical problems that arise in
the field of economics and finance, from exploring empirical relationships between
variables up to modeling and analyzing microeconomic systems. This is the most
comprehensive book written so far which demonstrates the usefulness of Maxima
in Economic Sciences.

2.3.6.2 Leydold and Petry: Introduction to Maxima for Economics, 2011

A detailed Maxima tutorial of some 120 pages with applications to Economics has [LeydoldME11]

been written by Josef Leydold and Martin Petry from Institute for Statistics and
Mathematics, WU Wien. It is based on version 5.25 and was last published in 2011.
It is available online as PDF.

2.4 Articles and Papers

A very comprehensive bibliography can be found in [SouzaMaxB04].

2.4.1 Publications by Richard Fateman

Richard J. Fateman, Prof. Emeritus of University of California at Berkeley, Depart-
ment of Computer Science, who has accompanied this CAS for 50 years, has pub-

13

lished a large number of articles and other papers on Macsyma/Maxima. Subjects
range from specific technical and algorithmic problems to reflections about the his-
tory of Macsyma’s development and its place in the evolution of CAS in general.
Most references can be found on his Berkeley homepage

http://people.eecs.berkeley.edu/ fateman/.

A considerable number of very interesting papers is available for free download at

https://people.eecs.berkeley.edu/ fateman/papers/.

2.5 Comparison with other CAS

2.5.1 Tom Fredman: Computer Mathematics for the Engineer, 2014

A free tutorial of 135 pages covering both Maxima and Octave has been published [FredmCME14]

in 2014 by Tom Fredman of Abo Akademi University, Finnland.

2.6 Internal and program documentation

2.7 Mailing list archives

14

http://people.eecs.berkeley.edu/~fateman/
https://people.eecs.berkeley.edu/~fateman/papers/

Part II

Basic Operation

15

Chapter 3

Basics

3.1 Introduction

3.1.1 REPL: The read-evaluate-print loop

Maxima is written in the programming language Lisp. Originally, before this lan-
guage was standardized, MacLisp, a dialect developed at MIT, was used, later the
Maxima source code was translated to Common Lisp, the Lisp standard still valid
today. One of the key features of Lisp is the so-called REPL, the read-evaluate-
print loop. When launching Lisp, the user sees a prompt where he can enter a Lisp
form. The Lisp system reads the form, evaluates it and displays the result. After
having done this, Lisp outputs the prompt again, giving back the initiative to the
user to start a new cycle of operation by entering his next form. The Lisp system
primarily works as an interpreter. Nevertheless, functions and packages can also
be compiled.

The same basic principle of operation has been employed to the Maxima language,
which in this book we will abbreviate MaximaL. Maxima also works with a REPL, as
being the cycle of interpretation of some expression entered by the user. (Later we
will see that Maxima program code can be compiled, too.) This design principle for
the user interface was easy to implement and therefore the natural choice in the
early times. With one exception, all Maxima front ends still use this principle today.
It may seem simple and out of date, but it offers a number of significant advantages
which the user will quickly learn to appreciate. The successive loops, as they are
operated sequentially and recorded chronologically on the screen, provide a natural
log which the user can scroll back at any time to see what he has done and what
results he has obtained so far. By simply copying and pasting, the user can take
both input and output from previous loops and insert it again at the input prompt.
Previous commands can be modified and reentered, and intermediate results can
be used for further computation.

But the benefits of this way of working reach even further: when programming in
MaximaL, the user can test out every bit of code in the REPL first, before integrating
it into his program. Bottom up, step by step, he builds the program, from the
most detailed routines to the most abstract layers, always basing every new part
on the direct experience in the test environment of his Maxima REPL. This way of
programming had proved to be very efficient in Lisp, and with good reason the

16

same could be expected for Maxima.

This basic principle of operation has been adopted by almost all other computer
algebra systems as well. By the way: most CAS’ are implemented in Lisp or a
Lisp-like language.

Thus, with regard to this general procedure of the REPL, MaximaL and Lisp have a
certain similarity. The user who takes the effort to learn Lisp will soon find out that
similarities reach much further. However, there are also significant differences.
While Lisp is a strictly and visibly list based language working with a non-intuitive,
but highly efficient prefix notation, MaximaL is much closer to traditional languages
of the Algol-type, more intuitive, more natural to the human user, with a structure
and notation closer to the mathematical one.

3.1.2 Command line oriented vs. graphical user interfaces

User interfaces in the early days were command line oriented, not graphical. They
worked in text mode, centered around a specific spot on the screen, called the
prompt. Input was done with the keyboard. On hitting enter, the input line was
executed, creating the output to be display after a simple line-feed. The REPL
makes very intelligent use of this initial situation, and many even very experienced
CAS users still work with no other interface today. In Maxima this interface is called
command line Maxima, sect. 33.1.1, or simply the console.

Nowadays, however, most people are used to employ the full screen of the com-
puter, and the mouse has become even more important as an input medium than
the keyboard. CAS interfaces have been developed that take this evolution into
account. wxMaxima, sect. 33.1.2, has been designed in a way similar to the Math-
ematica notebook, and just as the latter one is most important for Mathematica,
wxMaxima is now the predominant Maxima front-end. The basic structural ele-
ment of this interface is the cell, which is a kind of a local command line interface.
Multiple cells can be created in a Maxima session, allowing the user to work with
multiple command line interfaces in parallel. This shows that the basic structure of
working with the CAS does not significantly change when moving from the console
to wxMaxima. However, the output is no longer displayed in one-dimensional text
mode, but in two-dimensional graphical mode, allowing mathematical formulas to
be represented in a much more readable way.

We should mention here already that wxMaxima, being based on wxWidgets, has
significant drawbacks if it comes to error handling, sometimes making it less ef-
ficient for sophisticated MaximaL programming and debugging compared to the
other front-ends. Between the original console and wxMaxima are a number of
Maxima user interfaces which keep the singular REPL, but integrate it in some kind
of more graphical environment. Examples are XMaxima and iMaxima.

Since Gnuplot has been integrated into Maxima, output of functions can be done
in a fully graphical way with 2D- and 3D-plots in separate windows. 2D-plots can
be scrolled in four directions, while 3D-plots can even be turned around easily and
freely, with surfaces of adaptable transparency, to be viewed from all perspectives,
inside and out, like objects in a CAD program.

17

3.2 Basic operation

3.2.1 Executing an input line or cell

In command line Maxima, sect. 33.1.1, use enter to execute an input line. In
wxMaxima, sect. 33.1.2, use shift+enter.

3.3 Basic notation

3.3.1 Output description and numbering conventions

In this manual we use certain conventions to facilitate the description of Maxima’s
output and the interactive dialogue with Maxima. Note, however, that we never
change the input required by Maxima.

We represent output formulas always in the usual mathematical 2D notation. In
order to make output better readable, we usually omit the %-character in front of
Maxima system constants such as %e, %i, %pi, etc. We write Re and Im instead of
realpart and imagpart. And as wxMaxima does, we write z instead of conjugate(z).

Input and output tags, see section 4.1.1, are sometimes represented as they would
be in wxMaxima with its cell-based structure. Other frontends therefore might num-
ber input and output differently.

3.3.2 Syntax description operators

In order to facilitate describing the MaximaL syntax, we use a number of syntax
description operators. These do not form part of MaximaL itself and thus cannot
been entered in Maxima by the user. In order to distinguish them form the proper
MaximaL syntax, throughout this manual they have green color and a slightly bigger
size.

. . .
�

[syntax description operator]

Optional elements, e.g. optional function parameters, are enclosed in angle brack-
ets. Example: see genmatrix.
�

. . .
�

� . . .
�

[syntax description operator]

Alternatives are separated by
�

� and enclosed in
��

. More than two alternatives
can be represented by repeating the

�

� operator inside of the green parentheses.
Exactly one of the alternative has to be selected. Example: see to_poly_solve.

3.3.3 Compound and separation operators

(. . . , . . . , . . .) [matchfix operator]

While in Lisp any kind of list is enclosed in parentheses, in Maxima these are re-
served for specific lists, e.g. the list of parameters of an ordinary function definition,
the list of arguments of a function call, or a list of statements in a simple sequential
compound statement. The elements are separated by commas.

18

[. . . , . . . , . . .] [matchfix operator]

Square bracketes enclose data lists, e.g. the elements of a one-dimensional list, or
the the rows of a matrix. They also enclose the subscripts of a variable, array, hash
array, or array function. They are also used to enclose the local variable definitions
of a block. The elements are separated by commas.

(%i1) x: [a,b,c];
(%o1) [a,b,c]
(%i2) x[3];
(%o2) c
(%i3) array(y,fixnum,3);
(%o3) y
(%i4) y[2]: %pi;
(%o4) π
(%i5) y[2];
(%o5) π
(%i6) z[a]:b;
(%o6) b
(%i7) z[a];
(%o7) b
(%i8) g[k] := 1/(k^2+1);

(%o8)
1

k2 + 1
(%i9) g[10];

(%o9)
1

101

{. . . , . . . , . . . } [matchfix operator]

Braces enclose sets. The elements are separated by commas. Note that the ele-
ments of a set, unlike a list, are not ordered.

, [infix operator]

Separator of elements of a list or set. Note that in Lisp, instead, the separation
character of a list is the blank.

3.3.4 Assignment operators

3.3.4.1 Basic :

: [infix operator]

This is the basic assignment operator. When the lhs (lhs) is a simple variable (not
subscripted), : evaluates its rhs (rhs), unless quoted, and associates that value with
the symbol on the lhs.

(%i1) a:3;
(%o1) 3
(%i2) b:a; /* The rhs is evaluated before assigning. */
(%o2) 3
(%i3) c:’a; /* The rhs is not evaluated. */

19

(%o3) a
(%i4) ev(c); /* Evaluation of c. */
(%o4) 3

(%i1) b:a; /* The rhs evaluates to itself. */
(%o1) a
(%i2) a:c$ c:3;
(%o3) 3
(%i4) b; /* Simple evaluation of b. */
(%o4) a
(%i5) ev(b); /* Double evaluation of b. */
(%o5) c
(%i6) ev(ev(b)); /* Triple evaluation of b. */
(%o6) 3

Chain constructions are allowed; in this case all positions but the right-most one
are considered lhs.

(%i1) x : y : 3;
(%o1) 3
(%i2) x;
(%o2) 3
(%i3) y;
(%o3) 3

When the lhs is a subscripted element of a list, matrix, declared Maxima array, or
Lisp array, the rhs is assigned to that element. The subscript must name an existing
element; such objects cannot be extended by naming nonexistent elements.

When the lhs is a subscripted element of an undeclared Maxima array, the rhs is
assigned to that element, if it already exists, or a new element is allocated, if it
does not already exist.

When the lhs is a list of simple and/or subscripted variables, the rhs must evaluate
to a list, and the elements of the rhs are assigned to the elements of the lhs, ele-
ment by element, in parallel (not in serial; thus evaluation of an element may not
depend on the evaluation of a preceding one).

(%i1) [a, b, c] : [4, 7, 10];
(%o1) [4, 7, 10]
(%i2) a;
(%o2) 4

3.3.4.2 Indirect ::

:: [infix operator]

This is the indirect assignment operator. :: is the same as :, except that :: evaluates
its lhs as well as its rhs. Thus, the evaluated rhs is assigned not to the symbol on
the lhs, but to the value of the variable on the lhs, which itself has to be a symbol.

(%i1) x : ’y;
(%o1) y

20

(%i2) x :: 123;
(%o2) 123
(%i3) x;
(%o3) y
(%i4) y;
(%o4) 123
(%i5) x : ’[a, b, c];
(%o5) [a, b, c]
(%i6) x :: [1, 2, 3];
(%o6) [1, 2, 3]
(%i7) a;
(%o7) 1
(%i8) b;
(%o8) 2
(%i9) c;
(%o9) 3

A value (and other bindings) can be removed from a variable by functions kill
and remvalue. These unassignment functions are more important than they might
seem. Unbinding variables from values no longer needed should be made a habit by
the user, because forgetting about assigned values is a frequent cause of mistakes
in following computations which use the same variables in other contexts.

3.3.5 Miscellaneous operators

3.3.5.1 Comment

/* ... */ [matchfix operator]

This is the comment operator. Any input in-between will be ignored.

3.3.5.2 Documentation reference

? [prefix operator]
? [prefix operator]

These are the documentation operators. ? placed before a system function name f
(and separated from it by a blank) is a synonym for describe (f). This will cause the
online documentation about system function f to be displayed on the screen.

?? placed before a system function name f (and separated from it by a blank) is a
synonym for describe (f, inexact). This will cause the online documentation about
function f and all other system functions having a name which starts with "f" to be
displayed on the screen.

21

3.4 Naming of identifiers

3.4.1 MaximaL naming specifications

3.4.1.1 Case sensitivity

Symbols (identifiers) in Maxima are case-sensitive, i.e. Maxima distinguishes be-
tween upper-case (capital) and lower-case letters. Thus, NAME, Name and name
are all different symbols and may denote different variables.

3.4.1.2 ASCII standard

Maxima identifiers may comprise alphabetic characters, the digits 0 through 9, the
underscore _, the percent sign %, and any special character preceded by the back-
slash character. A digit may be the first character of an identifier, if it is preceded
by a backslash. Digits which are the second or later characters need not be pre-
ceded by a backslash.

alphabetic [property]

Special characters may be declared alphabetic using the declare function. If so de-
clared, they need not be preceded by a backslash in an identifier. The special char-
acters declared alphabetic are initially %, and _. The list of all characters presently
declared alphabetic can be seen as the Lisp variable *alphabet*.

Since almost all special characters from the ASCII code set are in use for other
purposes in Maxima, often as operators for which the parser pays special attention,
it makes little sense to declare them alphabetic. Thus, we have taken an example
with non-ASCII characters (which does not make much more sense, as we will soon
see).

(%i1) declare("äöüÄÖÜß",alphabetic);
(%o1) done
(%i2) Größe : 123;
(%o2) 123
(%i3) :lisp *alphabet*
(_ % ä ö ü Ä Ö Ü ß)
(%i4) featurep("ä",alphabetic);
(%o4) true

All characters in the string passed to declare as the first argument are declared to
be alphabetic. Function featurep returns true, if all characters in the string passed
to it as the first argument have been declared alphabetic by the user or are the _
or % characters.

3.4.1.3 Unicode support

Recently, efforts have been made to include Unicode support in Maxima. It has to
be stated, however, that Unicode support is not a universal feature of Maxima, but
depends to some extend on the operating system, on the Lisp and on the front-end
used. Given that our actual system supports it, almost any Unicode character can
nowadays be used within a Maxima identifier, including in the first position. Thus,

22

we do not need to declare German Umlaute as alphabetic, we can just use them.
We can use Greek letters, too, or even Chinese.

Special attention has to be payed, though, when using non-ASCII characters. If
things work well on one system, this does not guarantee it will work without prob-
lems on another one. Besides, there might still be issues in some situations and
circumstances that have not been solved in a satisfactory way yet.

As a general statement we can say that Linux gives better and more consistent
Unicode support than Windows. Concerning the Lisp, we find that SBCL is always a
good choice, combining most efficient behavior with least problems. From the point
of view of the front-ends, wxMaxima takes most efforts to provide comprehensive
Unicode support.

3.4.1.3.1 Implementation notes

Maxima uses Lisp function alphabetp to determine whether a character is allowed
as an alphabetic character in an identifier. This function refers to CL system func-
tion alpha-char-p. In a working UTF8 environment, this will allow almost any Uni-
code character except for punctuation and digits. In addition, alphabetp checks the
global variable *alphabet* for characters declared alphabetic by the user.

3.4.2 MaximaL naming conventions

3.4.2.1 System functions and variables

In general, Maxima’s system functions and variables use lower-case letters only
and use the underscore character to separate words within a symbol, e.g. carte-
sian_product.

In order to clearly distinguish them from system functions, our own additional func-
tions and variables start with capital letters and use capital letters to separate
words within a symbol, e.g. ExtractEquations.

3.4.2.2 System constants

System constants like the imaginary unit i, the Euler’s number e, or the constants
π and γ are preceded by % in Maxima (i.e. %i, %e, %pi, %gamma) to make them
better distinguishable from ordinary letters or identifiers. One has to keep this in
mind in order not to be confused. Note in the following example that log denotes
the natural logarithm with base e. Maxima and its system functions return the input
expression, if they cannot evaluate it.

(%i1) %e^log(x);
(%o1) x
(%i2) e^log(x);

(%o2) elog()

(%i3) %pi;
(%o3) %pi
(%i4) float(%pi);
(%o4) 2.128231705849268
(%i5) float(pi);

23

(%o6) pi

wxMaxima will return π both in number 3 and 6. In 3 it denotes the constant, in 6
the lower-case Greek letter.

3.4.3 Correpondence of MaximaL and Lisp identifiers

MaximaL Lisp

var
�

$VAR, $var, $Var
�

→ $VAR; |$VAR|

VAR |$var|

Var |$Var|

?var
�

VAR, var, Var
�

→ VAR

?\∗ r\ − 1\∗ *VAR−1*

Table 3.1 – Correspondence of MaximaL and Lisp identifiers

MaximaL and Lisp symbols are distinguished by a naming convention. A Lisp symbol
which begins with a dollar sign $ corresponds to a MaximaL symbol without the
dollar sign. For example, the MaximaL symbol foo corresponds to the Lisp symbol
$FOO. Lisp functions and variables which are to be visible in Maxima as functions
and variables with ordinary names (no special punctuation) must have Lisp names
beginning with the dollar sign $.

On the other hand, a MaximaL symbol which begins with a question mark ? cor-
responds to a Lisp symbol without the question mark. For example, the MaximaL
symbol ?foo corresponds to the Lisp symbol FOO. Note that ?foo is written without
a space between ? and foo; otherwise it might be mistaken for the Maxima function
describe("foo") which can also be written as ? foo.

Hyphen -, asterisk *, or other special characters in Lisp symbols must be escaped
by backslash \ where they appear in MaximaL code. For example, the Lisp identifier
foo-bar is written ?\∗ ƒoo\ − br\∗ in MaximaL.

While Maxima is case-sensitive, distinguishing between lowercase and uppercase
letters in identifiers, Lisp does not make this distinction. $foo, $FOO and $Foo are
all converted by the Lisp reader by default to the Lisp symbol $FOO.
This discrepancy requires some rules governing the translation of names between
Lisp and Maxima.

1. A Lisp identifier not enclosed in vertical bars || corresponds to a Maxima identifier
in lowercase. Whether a Lisp identifier is uppercase, lowercase, or mixed case, is
ignored, e.g., Lisp $foo, $FOO, and $Foo all correspond to Maxima foo. This is
because $foo, $FOO and $Foo are converted by the Lisp reader to the Lisp symbol
$FOO, since Lisp is not case-sensitive.

2. A Lisp identifier enclosed in vertical bars and

2.1. which is all uppercase or all lowercase corresponds to a Maxima identifier
with case reversed. That is, uppercase is changed to lowercase and lowercase

24

to uppercase. E.g., Lisp |$FOO| and |$foo| correspond to Maxima foo and FOO,
respectively.

2.2. which is mixed uppercase and lowercase corresponds to a Maxima identifier
with the same case. E.g., Lisp |$Foo| corresponds to Maxima Foo.

25

Chapter 4

Using the Maxima REPL at the
interactive prompt

4.1 Input and output

4.1.1 Input and output tags

In order to make backward references easier, the cycles of operation of the Maxima
REPL are numbered consecutively. On launching a Maxima session at the Maxima
console, the user sees the first input tag.

(%i1)

Now he can input a MaximaL expression to be evaluated. We call this a statement
or form. Enter starts evaluation. The result (the value returned) is shown with an
output tag having the same number as the input tag. Then a new input tag appears,
introducing the next cycle of operation.

(%i1) 2+3;
(%o1) 5
(%i2)

wxMaxima shows a slightly different behavior. The input tag appears only at eval-
uation time. Enter will only cause a line-feed, having no other effect on evaluation
than a blank, while shift-enter or ctrl-enter starts evaluation. When an input expres-
sion is an assignment, the corresponding output expression displays no numbered
output tag, but instead the symbol to the left of the assignment in parentheses. If
the input expression is only a symbol, the normal output tag is displayed.

(%i1) temp:-30.5;
(temp) -30.5
(%i2) temp;
(%o2) -30.5

linenum [variable]

Maxima keeps the current tag number in the global variable linenum. Entering
linenum:0 or kill(all) resets the input and output tag number to 1.

26

(%i17) linenum:0;
(%o0) 0
(%i1) a;
(%o1) a

inchar default: "%i" [variable]
outchar default: "%o" [variable]

These global variables contain the symbols used in input and output tags. They can
be changed by the user.

4.1.2 Multiplication operator

The * (asterisk) operator for multiplication cannot be omitted in input; a blank does
not mean multiplication.

stardisp default: false [variable]

In output, * normally is not displayed, here blank means multiplication. When
stardisp is set to true, however, the * is displayed.

4.1.3 Special characters

The standard Maxima console does not allow for input and display of special charac-
ters. iMaxima displays in Latex output form, thus allowing for the display of special
characters. Only wxMaxima allows input of special characters from palettes and
also displays them.

4.2 Input

4.2.0.1 One-dimensional form

Maxima and all of its front-ends allow input of mathematical expressions only in
one-dimensional form. Parentheses have to be used to group subexpressions, e.g.
the numerator and denominator of a fraction.

4.2.1 Statement termination operators

; [postfix operator]
$ [postfix operator]
, [infix operator]

After entering an input expression, either a semicolon or a dollar sign is expected as
a statement termination operator. In both cases the next output tag is assigned the
result from evaluation of the input expression, but in the latter case, output is not
displayed on the screen. Multiple expressions can be entered in the same line, but
each of them needs a termination character. They are also expected at the end of
every input expression to be processed from a file. Inside of a compound statement,
however, the individual statements are not separated by a colon or dollar sign, but
by a comma.

27

4.2.2 System variables for backward references

_ (underscore) [variable]

This system variable contains the most recently evaluated input expression, i.e.
the expression with input tag (%in), n ∈ N being the most recent cycle having
been evaluated. _ is assigned the input expression before the input is simplified
or evaluated. However, the value of _ is simplified (but not evaluated) when it is
displayed.

_ is recognized by batch and load. In a file processed by batch, _ has the same
meaning as at the interactive prompt. In a file processed by load, _ is bound to the
input expression most recently evaluated at the interactive prompt or in a batch
file. _ is not bound to the input expressions in the file being processed.

Note that a :lisp command is not associated with an input tag and cannot be refer-
enced by _.

(%i1) 13 + 29;
(%o1) 42
(%i2) :lisp $_

((MPLUS) 13 29)
(%i2) _;
(%o2) 42
(%i3) sin (%pi/2);
(%o3) 1
(%i4) :lisp $_

((%SIN) ((MQUOTIENT) $%PI 2))
(%i4) _;
(%o4) 1
(%i5) a: 13$
(%i6) a + a;
(%o6) 26
(%i7) :lisp $_

((MPLUS) $A $A)
(%i7) _;
(%o7) 2 a
(%i8) a + a;
(%o8) 26
(%i9) ev (_);
(%o9) 26

The above example not only illustrates the _ operator, but also nicely demonstrates
the difference between evaluation and simplification. Although in a broader sense
we often talk about "evaluation" when we want to indicate that Maxima processes
an input expression in order to compute an output, in the strict sense the meaning
of evaluation is limited to dereferencing. Everything else is simplification. In the
example above, only at %o6, %o8 and %o9 we see evaluation, as the symbol a is
dereferenced, i.e. replaced by its value. After this replacement, the addition of the
values constitutes another simplification.

%in [variable]

28

This system variable contains the input expression with input tag (%in), n ∈ N. Its
behavior corresponds exactly to _.

__ (double underscore) [variable]

This system variable contains the input expression currently being evaluated. Its
behavior corresponds exactly to _. In particular, when load (filename) is called
from the interactive prompt, __ is bound to load (filename) while the file is being
processed.

4.2.3 General option variables

4.3 Output

4.3.0.1 One- and two-dimensional form

display2d default: true [variable]

Output will normally be displayed in two-dimensional form, including in the command-
line mode of the console. If the option variable display2d is set to false, output will
be displayed in one-dimensional form as in the input.

4.3.0.2 System variables for backward references

% [variable]

This system variable contains the output expression most recently computed by
Maxima, whether or not it was displayed, i.e. the expression with output tag (%on),
n ∈ N being the most recent cycle having been evaluated. When the output was
not displayed, this output tag is not visible on the screen either.

% is recognized by batch and load. In a file processed by batch, % has the same
meaning as at the interactive prompt. In a file processed by load, % is bound to the
output expression most recently computed at the interactive prompt or in a batch
file; % is not bound to output expressions in the file being processed.

Note that a :lisp command does not create an output tag and therefore cannot be
referenced by %.

%th(n) [function]

This system function returns the n-th previous output expression, n ∈ N. Its behavior
corresponds to %.

%on [variable]

This system variable contains the output expression with output tag (%on), n ∈ N.
Its behavior corresponds exactly to %.

%% [variable]

In compound statements, namely (s1, . . . , sn), block, or lambda, this system variable
contains the value of the previous statement. At the first statement in a compound

29

statement, or outside of a compound statement, %% is undefined. %% is recog-
nized by batch and load, and it has the same meaning as at the interactive prompt.
A compound statement may comprise other compound statements. Whether a
statement be simple or compound, %% contains the value of the previous state-
ment. Within a compound statement, the value of %% may be inspected at a break
prompt, which is opened by executing the break function.

4.3.1 Functions for output

print (p1, . . . , pn) [function]
print0 (p1, . . . , pn) [function of rs_print0]

4.3.2 General option variables

powerdisp default: false [option variable]

When powerdisp is true, an expression is displayed in reverse canonical order, see
sect. 9.3.

verbose default: false [option variable]

This global variable controls the amount of output printed by various function, e.g.
powerseries.

4.3.3 Variables generated by Maxima

In certain situations Maxima functions may generate there own new variables.

General variables are composed of a small g followed by a number, starting with
g1, g2, . . . Summation indeces beginn with a small i instead and are numbered
independently of the g-variables.

For instance, each time powerseries returns a power series expansion, it generates
a new summation index, starting with 1, 2, . . .

4.3.4 Pretty print for wxMaxima

Package rs_pretty_print.mac provides functions for pretty output. When placed at
the end of an input form, they will add a comment and a noun form of the input
at the beginning of Maxima’s return value. These functions are particularly useful
when employed within wxMaxima for evaluating large cells. With the additional in-
formation provided by functions Pr and Pr0, the output can be read fluently without
constantly having to refer back to the input.

This package uses function print0 instead of print, and thus it requires package
rs_print0.lisp. This also means that between the parameters of the leading com-
ment, blanks have to be inserted manually.

expr$ Pr(

"text"
�

)$ [function of rs_pretty_print]
expr$ Pr0(

"text"
�

)$ [function of rs_pretty_print]
expr$ Pr00(

"text"
�

)$ [function of rs_pretty_print]

30

Function Pr is used in the following way. Terminate the input expression with $.
Then continue on the same line with the function call of Pr, also terminated with $.
If a parameter string "text" is supplied, Maxima’s output will be preceeded by "text"
as a comment to what follows, terminated with a colon. Then, if the return value
is different from the input, a noun form of the input will preceed Maxima’s return
value, separated by either = or <=>, depending on whether the expression is an
equation or not. In case of the input being an assignment, the variable assigned
to will preceed the assigned value (again split into a noun form and the evaluated
form, if different), separated by :=.

Mathematical expressions evaluated by Maxima can be included in the leading com-
ment. The comment can comprise a variable number of parameters (including
zero), separated by commas.

Pr0 is the same as Pr, but the noun form is not displayed. Pr0 is useful, when
a number of consecutive transformations of an expression is performed and the
leading comment is to replace the information given by the noun form of a step.
Pr00 is the same as Pr0, but the equal or equivalence sign is omitted as well.

(%i1) bg[x]: x[t]=v[ox]*t$ Pr("Bewegungsgleichung in x-Richtung")$
(%i2) bg[z]: z[t]=-g*t^2/2+v[oz]*t+h$ Pr("Bew.gl. in z.Richtung")$
(%i3) eliminate([bg[x],bg[z]],[t])[1]$ Pr00("t eliminieren")$
(%i4) expand(solve(%th(2),z[t]))[1]$ Pr00("Auflösen nach z")$
(%i5) z[x]: ev(rhs(%th(2)),x[t]=x)$ Pr00("Wurfparabel-Funktion")$

(%o1) Bewegungsgleichung in x-Richtung: bg := t = o t

(%o2) Bew.gl. in z-Richtung: bgz := zt = −(g∗ t2)/2 + oz ∗ t + h

(%o3) t eliminieren: 2
o
(2zt − 2h) + g2t − 2o oz t

(%o4) Auflösen nach z: zt = −
g2

t

22
o

+
oz t

o
+ h

(%o5) Wurfparabel-Funktion: z := −
g2

22
o

+
oz

o
+ h

Note that when using one of the pretty print functions, %th(2) has to be used in-
stead of % when refering to the last output expression. The next example shows
that we can even display the most challenging tensor notations.

(%i1) goijρ:diff(goij,ρ)$ Pr00(’g[",ρ"]^ij)$
(%i2) zeromatrix(3,3)$ Pr00(’g[",φ"]^ij," = ",’g[",z"]^ij," ",’g[k]^".l")

$

(%o1) gj
,ρ
: gojρ :=











0 0 0

0 − 2
ρ3

0

0 0 0











(%o2) gj
,φ
= gj

,z
= g.

k
:











0 0 0

0 0 0

0 0 0











31

Chapter 5

Graphical representation of
functions

5.1 Introduction

There are two different Maxima interfaces for plotting, both being based on GNU-
plot: plot and draw. Both interfaces are able to deliver 2D and 3D representations.
Although they cover the same kind of problems, the two interfaces are substantially
different with respect to the structure of their commands, so we treat them sepa-
rately. Plot is the older interface, offering less functionality, but being easier at the
same time, so we describe it first.

Both plot and draw come with additional special functions for use with wxMaxima
only. These functions start with the prefix wx (e.g. wxplot2d, wxplot3d). They are
the same as the ordinary functions plot2d and plot3d, with the only difference that
they do not open a separate window to display the plot, but instead integrate it into
the output of the .wxm file or into the .wxmx file.

5.2 Plot

5.2.1 General

5.2.1.1 Options, (user) standard options, and system standard options

The user can customize any of the plot functions by setting plot options. This can
be done individually for each function call. It is also possible to set (user) standard
options which then apply to any function call unless they are overwritten by it.
Certain individual options cannot be set as standard, see details in the description
of plot options.

Certain options are set standard by the system already, e.g. the order of colors in
a multiple plot, if no colors are specified by the user. They can be viewed with the
following function.

set_plot_option (

opton1, . . . , optonn
�

) [function]
get_plot_option (nme

, nde
�

) [function]
remove_plot_option (name) [function]

32

Setting (user) standard options is done with function set_plot_option. Each option is
a list in square brackets, as described below. set_plot_option returns a list not only
of the standard options currently set by the user, but also of all system standard
options. Giving an empty set of parentheses to this function will only return the
currently set (user and system) standard options without adding any to them.

get_plot_option returns as a list in square brackets the current standard setting of
the option name. If the second argument index is present, only the indexth element
of this list will be returned (the first element is the option name).

remove_plot_option removes from the list of standard options the option name.
Note that this function requires exactly one argument; multiple removals are not
possible.

5.2.1.2 Options for both 2D and 3D plots

All options (this also holds for the options specific to either 2D or 3D as described
in sections 5.2.2.4 and 5.2.3.3) consist of a list (in square brackets) starting with
one of the keywords in this section, followed by one or more values. (This layout is
comparable to a function name and its arguments.) The options that accept among
their possible values true or false, can also be set to true by simply writing their
names. For instance, typing logx as an option is equivalent to writing [logx, true].

[box, true
�

� false] default: true [plot option]

If set to true, a bounding box will be drawn around the plot; if set to false, no box
will be drawn.

[color, coor1, . . . , coorn] [plot option]

In 2d plots this option defines the color (or colors) for the various curves. In plot3d,
it defines the colors used for the mesh lines of the surfaces, when no palette is
being used. If there are more curves or surfaces than colors, the colors will be
repeated in sequence. The valid colors are red, green, blue, magenta, cyan, yellow,
orange, violet, brown, gray, black, white, or a string starting with the character #
and followed by six hexadecimal digits: two for the red component, two for green
component and two for the blue component. If the name of a given color is unknown
color, black will be used instead.

[legend, false
�

� strng1, . . . , strngn] [plot option]

Specifies the labels for the plots when various plots are shown. If there are more
plots than the number of labels given, they will be repeated. If given the value false,
no legends will be shown. By default, the names of the expressions or functions will
be used, or the words dscrete1, . . . , dscreten for discrete sets of points.

[logx, true
�

� false] default: false [plot option]
[logy, true

�

� false] default: false [plot option]

Makes the horizontal or vertical axes to be scaled logarithmically.

[plot_format, format] default: gnuplot
�

� gnuplot_pipes [plot option]

33

Specifies the format for the plot. In Windows the default is gnuplot, in all other
systems it is gnuplot_pipes. The formats xmaxima or openmath will cause the plot
to be displayed in an xMaxima window.

[plot_realpart, true
�

� false] default: false [plot option]

If set to true, the functions to be plotted will be considered as complex functions
whose real part should be plotted; this is equivalent to plotting realpart(function).
If set to false, nothing will be plotted when the function does not give a purely real
value. For instance, when x is negative, log(x) gives a complex value, with the real
value equal to log(abs(x)); if plot_realpart were true, log(-5) would be plotted as
log(5), while nothing would be plotted if plot_realpart were false.

(%i1) plot2d(realpart(log(x)),[x,-2,2],[y,-4,2]);
(%i2) plot2d(log(x),[x,-2,2],[y,-4,2],plot_realpart);

Both plots will return exactly the same graph.

Figure 5.1 – Plotting
the real part of the
complex logarithm.

[same_xy, true
�

� false] default: false [plot option]

If true, displays the graph with the same scale for both x and y axes. For a 2D plot,
see also yx_ratio.

[xlabel, string] [plot option]
[ylabel, string] [plot option]
[zlabel, string] [plot option]

xlabel and ylabel specify the string that will label the first/second axis; if this option
is not used, that label will be the name of the independent variable / "y", when plot-
ting functions with plot2d or implicit_plot, or the name of the first/second variable,
when plotting surfaces with plot3d or contours with contour_plot, or the first/second
expression in the case of a parametric plot.

zlabel specifies the string that will label the third axis, when using plot3d. If this op-
tion is not used, that label will be “z”, when plotting surfaces, or the third expression
in the case of a parametric plot. It will be ignored by plot2d and implicit_plot.

34

These options cannot be used with set_plot_option.

5.2.1.3 Zooming the plot

mails Robert and Laurent, 12.12.2018

5.2.2 2D

There are 5 basic types of 2D plot: explicit plot, parametric plot, discrete plot,
implicit plot, and contour plot. The first three are implemented in function plot2d,
the last two in separate functions.

5.2.2.1 plot2d

plot2d (
�

pot
�

� [pot1, . . . , potn]
�

, _rnge
�

, y_rnge
�

, optons
�

) [function]
wxplot2d(...) [function]

These functions plot a two-dimensional graph of
- an expression giving the y-coordinate as a function of one variable being the x-
coordinate (explicit plot),
- two expressions, one for the x- and one for the y-coordinate, as being functions of
a single common parameter (parametric plot), or
- a number of discrete points in the xy-plane (discrete plot).

Each type can be used in single or multiple form, and different types can be com-
bined to one representation.

pot
�

� [pot1, . . . , potn]

A single plot is given as the first argument to plot2d while a multiple plot is given
as a list (of plots) being the first argument. Each of the plots is either an expression
(for an explicit plot), a parametric plot, or a discrete plot.

5.2.2.1.1 Explicit plot

A single 2D explicit plot displays the graph of an expression as a function of one vari-
able. While the independent variable determines the x-coordinate of a plot point,
the function value determines its y-coordinate. A multiple explicit plot displays
multiple such graphs. An explicit functional expression in terms of the independent
variable is given for each individual plot. The independent variable has to be the
same for all plots of a multiple explicit plot.

x_range is of the form: [x_name, min, max].

This is mandatory for explicit plots and specifies the name of the independent vari-
able of the expression(s) to be plotted, and the range of its domain to be displayed
on the horizontal axis. In case of a multiple explicit plot, the same x_range is
used for all expressions. Individual plotting ranges are not possible (in contrast to
plot3d). Hence, it is not possible to plot a piecewise defined function. In a combi-
nation of explicit and parametric plots, the name of the independent variable has
to be x.

35

y_range is of the form: [y, min, max].

This is optional and specifies the range of the codomain to be displayed on the
vertical axis. If this option is used, the plot will show this exact vertical range,
independently of the values reached by the plot. Everything outside of the given
range will be clipped off. If the vertical range is not specified, it will be set according
to the minimum and maximum values of the second coordinate reached by the plot.
For y_range the name is always y. So it is wise not to use y as the name of the
independent variable.

The complete syntax for an explicit plot is

plot2d (
�

epr
�

� [epr1, . . . , eprn]
�

, _rnge
�

, y_rnge
�

, optons
�

)

Options are described in sections 5.2.1.2 and 5.2.2.4. In case of a multiple plot,
different colors will be used automatically for the different expressions and a legend
will be created. Options present in case of a multiple plot apply to all plots; it is not
possible to set options individually.

Note that the separate plot window (not when integrated into the wxMaxima file
with wxplot2d) can be scrolled both horizontally and vertically to see beyond the
selected ranges. The plot can be exported, e.g. as a .png file, directly from the
separate plot window.

(%i1) plot2d([%e^x, %e^(-x), log(x), 1/x, sqrt(x)],[x,-3,5],[y,-10,10]);

Figure 5.2 – Multiple
2D explicit plot.

5.2.2.1.2 Parametric plot

A single 2D parametric plot displays a graph generated in parallel by two different
expressions, one for the x- and one for the y-coordinate, as being functions of a
common single parameter. The name of the parameter always has to be t. A
multiple parametric plot displays multiple such graphs. The complete syntax for a
single parametric plot is

plot3d ([parametric, epr, epry, [t, min, max]]

, optons
�

).

36

This creates a curve in in the two-dimensional space epr × epry in terms of the
parameter t ranging from min to max.

Neither x_range nor y_range have to be present. When they are, they will specify
the ranges to be displayed in the graph for the horizontal and the vertical axis.
When they are not present, ranges will be set according to the minimum and maxi-
mum values of the coordinates reached by the plot points.

(%i1) plot2d([[parametric, sin(t), cos(t),[t,0,2*%pi]],[parametric, sin(t
), cos(t)/2,[t,0,2*%pi]]],same_xy);

Figure 5.3 – Multiple
2D parametric plot.

5.2.2.1.3 Discrete plot

A single 2D discrete plot displays a graph consisting of a number of discrete points
specified explicitly by their x- and y-coordinates. A multiple discrete plot displays
multiple such graphs. The syntax for a single discrete plot is

[dscrete, st, yst]
�

� [dscrete, [[1, y1], . . . , [n, yn]]

This creates a plot of n discrete points, where xlist and ylist are lists in square
brackets of n elements each, containing in sequence the x- resp. y-coordinates
of the points to be plotted. So the coordinates of the points can be enterd either
separately for x- and y- valuse, or point by point. If no option styles is present,
by default [style, lines] is assumed, that is, the discrete points are linked by line
segments, see section 5.2.2.4.

(%i1) plot2d([[discrete, makelist(i,i,1,10),makelist(sqrt(i),i,1,10],[
discrete, makelist(i,i,0,10),makelist(sqrt(i)+sin(i),i,0,10)]],[style,
points],[point_type,plus]);

For more examples see the examples to the function rk implementing the Runge-
Kutta method for numerically solving a first order ODE.

Combining a discrete with an explicit plot, e.g., it is possible to represent the dis-
crete data of an experiment together with a theoretically assumed continuous func-
tion to interpret them.

37

Figure 5.4 – Multiple
discrete plot2d. The
x- and y-coordinates of
the points are gener-
ated by function make-
list.

5.2.2.2 Implicit plot

A single 2D implicit plot displays the graph of a function given implicitly by an
equation containing both the independent (x-coordinate) and the dependent (y-
coordinate) variable. This equation does not have to be in explicit form.

implicit_plot (
�

eq
�

� [eq1, . . . , eqn]
�

, x_range, y_range

, optons
�

) [function]
wximplicit_plot(...) [function]

In the first case this plots a single function defined implicitly by equation equ. The
syntax is similar to plot2d. The domain is defined by x_range and y_range which
are both mandatory. Both variable names can be selected freely. Multiple implicit
plots can be combined to a graph by giving a list of equations [eq1, . . . , eqn], one
for each plot. Before it can be used this function has to be loaded.

(%i1) load(implicit_plot);
(%i1) implicit_plot([x^2+y^2=1, (x/2)^2+y^2=1/4], [x,-1,1], [y,-1,1],

same_xy);

Figure 5.5 – Multiple
implicit plot. The re-
sulting curves are the
same as in the multiple
parametric plot of Fig.
5.3.

38

5.2.2.3 Contour plot

A 2D contour plot displays contours (curves of equal value) of a scalar-valued func-
tion of two arguments over a 2D region defined by the domains of these two argu-
ments. Such a function can be considered a scalar field.

contour_plot (expr, x_range, y_range

, [opt1], . . . , [optn]
�

) [function]
wxcontour_plot(...) [function]

This plots several curves of equal value of expr over the region defined by x_range
and y_range. The names of the x- and y-coordinates can be selected freely. con-
tour_plot accepts only options which can be used for plot3d. Each one of them has
to be present as a list, i.e. the abbreviation of giving only the name of an option to
indicate its value as true, is not allowed. Some of these options, e.g. same_xy, will
cause the 2D plot to be displayed in a 3D representation.

(%i1) contour_plot(x/y,[x,-2,2],[y,-2,2]);

Figure 5.6 – Contour
plot.

5.2.2.4 Options for 2D

[es,
�

e
�

� ƒse
�

] default: true [plot option]

value can be either true, false, x, y or solid. If false, no axes are shown; if x or y,
only the x or y axis will be shown; if true, both axes will be shown. solid will show
the two axes with a solid line, rather than the default broken line.

[point_type, type1, . . . , typen] [plot option]

Each set of points to be plotted with the style points or linespoints will be repre-
sented with objects taken from this list, in sequential order. If there are more sets
of points than objects in this list, they will be repeated sequentially. The possible ob-
jects that can be used are: bullet, circle, plus, times, asterisk, box, square, triangle,
delta, wedge, nabla, diamond, lozenge.

[style, stye1
�

� [stye1], . . . , styen,
�

� [styen]] [plot option]

39

Describes the style(s) of the plot(s). If there are more plots than styles present, the
styles will be repeated sequentially. Each style is either given by its name only, or
as a list with additional arguments. In the first case, standard values are assumed
for the style. In the second case, the first element of the list is the name of the
style, followed by the arguments.

Each style can be either lines for line segments, points for isolated points, lines-
points for segments and points, or dots for small isolated dots. Gnuplot accepts
also an impulses style. If enclosed in a list, lines accepts one or two arguments: the
width of the line and an integer that identifies a color. The default color codes are:
1: blue, 2: red, 3: magenta, 4: orange, 5: brown, 6: lime and 7: aqua. If Gnuplot
is used with a terminal different than X11, those colors might be different. points
accepts one to three arguments; the first one is the radius of the points, the second
one is an integer that selects the color, using the same code used for lines and the
third one is currently used only by Gnuplot and it corresponds to several objects
instead of points. The default types of objects are: 1: filled circles, 2: open circles,
3: plus signs, 4: x, 5: *, 6: filled squares, 7: open squares, 8: filled triangles, 9:
open triangles, 10: filled inverted triangles, 11: open inverted triangles, 12: filled
lozenges and 13: open lozenges. Note that point types can be specified with option
point_type, see above. linespoints accepts up to four arguments: line width, points
radius, color and type of object to replace the points.

[yx_ratio, r] [plot option]

r defines the ratio between the vertical and the horizontal sides of the rectangle
used to make the plot. See also same_xy.

5.2.3 3D

In 3D only two basic types of plot are possible: explicit plot and parametric plot.
They are both implemented in function plot3d. Implicit 3D plots are possible only
with draw3d.

5.2.3.1 plot3d

plot3d (plot

, optons
�

) [function]
wxplot3d(...) [function]

These functions plot a three-dimensional graph of
- an expression giving the z-coordinate as a function of two variables being the x-
and the y-coordinates (explicit plot), - three expressions, one for each of the x-, y-,
and z-coordinates, as being functions of two common parameters (parametric plot).

Multiple explicit plots can be combined to one representation. In contrast to plot2d,
however, only single parametric plots can be displayed, and the combination of
explicit and parametric plots is not possible, either.

5.2.3.1.1 Explicit plot

A single 3D explicit plot displays the graph of an expression giving the z-coordinate
as a function of two variables being the x- and y-coordinates. A multiple explicit

40

plot displays multiple such graphs. In this case, an explicit functional expression in
terms of the independent variables is given for each individual plot.

For a single plot, the explicit functional expression is given as the first argument to
plot3d. In this case, x_range and y_range have to be the second and third argument,
possibly followed by options. The complete syntax for a single plot is

plot3d (expr, x_range, y_range

, optons
�

).

A multiple explicit plot can have two different forms, depending on whether the
individual plots share the same x_range and y_range or not. In both cases, and in
contrast to plot2d, x_range and y_range form part of the list of plots. The syntax
for a multiple explicit plot using the same x_range and y_range is

plot3d ([epr1, . . . , eprn, _rnge, y_rnge]

, optons
�

).

The syntax for a multiple plot using a different x_range and y_range for each indi-
vidual plot is

plot3d ([[epr1, _rnge1, y_rnge1],. . . ,[eprn, _rngen, y_rngen]]

, optons
�

).

x_range is of the form: [x_name, min, max],
y_range is of the form: [y_name, min, max].

These are both mandatory within explicit plots and specify the names (which can
be chosen freely) of the independent variables of the expression(s) to be plotted,
and the ranges of their domains. x_range and y_range, however, can be repeated
as part of the options. In this case, their names have to be x and y, and they specify
the ranges to be displayed on the two horizontal axes. Everything outside of the
given ranges will be clipped off. If the ranges are not specified within the options,
ranges to be displayed will be set according to the minimum and maximum values
of the domains specified within the explicit plots.

z_range is of the form: [z, min, max].

This is optional and specifies the range of the codomain to be displayed on the
vertical axis. If this option is used, the plot will show that exact vertical range,
independently of the values reached by the plot. Everything outside of the given
range will be clipped off. If the vertical range is not specified, it will be set according
to the minimum and maximum values of the third coordinate of the plot points. For
z_range the name is always z. So it is wise not to use z as the name of one of the
independent variables.

Options are described in sections 5.2.1.2 and 5.2.3.3. In case of a multiple plot,
different colors will be used automatically for the different expressions and a legend
will be created. Options present in case of a multiple plot apply to all plots; it is not
possible to set options individually.

Note that the separate plot window (not when integrated into the wxMaxima file
with wxplot3d) can be scrolled in all three directions to see beyond the selected
ranges. Furthermore, by using the mouse, the surface plotted can be turned around
and viewed from all sides. The plot can be exported, e.g. as a .png file, directly
from the separate plot window.

41

Here is an example of a multiple explicit plot consisting of three individual plots,
each having different x- and y-ranges

(%i1) plot3d([[x^2+y^2,[x,-4,4],[y,-4,4]],[x^3+y^3,[x,-3,3],[y,-3,3]],[x
^4+y^4,[x,-2,2],[y,-2,2]]]);

Figure 5.7 – Multi-
ple 3D explicit plot
with different x- and
y-ranges for each
surface.

5.2.3.1.2 Parametric plot

A single 3D parametric plot displays a surface generated in parallel by three dif-
ferent expressions (for the x-, y- and z-coordinates) as functions of two common
parameters. The names and the ranges of these parameters don’t necessarily have
anything to do with the names and ranges of the x-, y- and z-coordinates. A multiple
parametric plot displays multiple such surfaces. The complete syntax for a single
parametric plot is

plot3d ([epr, epry, eprz], [p_nme1,mn1,m1],[p_nme2,mn2,m2]

, optons
�

).

This creates a surface in the three-dimensional space epr×epry×eprz in terms
of the two common parameters p_nme1 and p_nme2.

Neither x_range nor y_range nor z_range have to be present (in the options section).
When they are, their names have to be x, y, and z, and they will specify the ranges
to be displayed for the two horizontal and the vertical axes. When they are not
present, ranges will be set according to the minimum and maximum values of the
coordinates of the plot points.

(%i1) plot3d([t+u,t-u,t*u],[t,0,2],[u,0,2]);

5.2.3.2 Coordinate transformations for 3D

plot3d not only supports standard coordinate transformations from cylindrical or
spherical to cartesian coordinates, but in addition lets the user define and apply his
own special coordinate transformation functions. This not only allows for giving the
expressions to be plotted in cylindrical or spherical coordinates, but in any type of
coordinates the user wants.

42

Figure 5.8 – Single 3D
parametric plot.

5.2.3.2.1 Standard coordinate transformations

Standard coordinate transformations predefined for plot3d are
- cylindrical to cartesian (polar_to_xy), and
- spherical to cartesian (spherical_to_xyz).

Note that polar_to_xy cannot be used with plot2d, it is only a 3D feature, and it
should have better been called cylindrical_to_xyz. In the next section we will define
our own coordinate transformation carrying precisely this name.

A coordinate transformation is invoked in a plot3d with option transform_xy, see
section 5.2.3.3:

(%i1) plot3d (5, [theta, 0, %pi], [phi, 0, 2*%pi], same_xyz,
[transform_xy, spherical_to_xyz]);

Figure 5.9 – 3D explicit
plot in spherical coor-
dinates.

5.2.3.2.2 User-defined coordinate transformations

make_transform ([cnme1, cnme2, cnme3],[epr, epry, eprz]) [function]

43

Returns a function suitable to be used in the option transform_xy of plot3d.
cnme1, cnme2, cnme3 specify the names of the three new coordinates, and
epr, epry, eprz their functional expressions to build the cartesian x-, y- and
z-coordinates.

As an example, we shall define a coordinate transformation called cylindrical_to_xyz
which is in fact identical to the preconfigured one polar_to_xy

(%i1) cylindrical_to_xyz: make_transform([r,phi,z], r*cos(phi), r*sin(phi
),z)$

(%i2) plot3d (-r, [r, 0, 3], [phi, 0, 2*%pi], [transform_xy,
cylindrical_to_xyz]);

Figure 5.10 – 3D ex-
plicit plot in cylindrical
coordinates.

5.2.3.3 Options for 3D

[same_xyz, true
�

� false] default: false [plot option]

If true, the scales of all three axes will be the same.

[transform_xy, false
�

� ct_name] default: false [plot option]

This is a 3D option only. It allows for coodinate transformations within plot3d.
ct_name is the name of either a predefined coordinate transformation (polar_to_xy
or spherical_to_xyz), or one defined by the user with make_transform. See section
5.2.3.2 for details.

5.3 Draw

5.3.1 Introduction

This package is a Maxima interface to GNUplot. It allows for significantly more
functionality compared to Maxima’s propriatory plot package, but at the price of a
far more complicated syntax.

44

This package was written and is being maintained by Mario Rodriguez Riotorto.
Ample examples can be found in ...

5.3.2 General structure

The draw package has to be loaded explicitly by the user with load(draw) prior to
using it.

draw (. . . ,
�

gr2d
�

�gr3d
�

, . . .

, optons
�

) [function]

This main function of the package plots a column of scenes, each of them being a
picture, a graphical diagram, a plot in either 2D or 3D. Each scene is evoked by an
appearance of a scene constructor, either gr2d or gr3d, which can be combined in
any order and number. General options for all scenes may follow. Each scene can
contain multiple graphical objects, e.g. plots.

5.3.2.1 Using options

5.3.2.1.1 General syntax

The general syntax for options is

option_name = [e1, . . . , en].

Global options may appear anywhere in draw, gr2d or gr3d, draw2d or draw3d,
their position does not matter.

5.3.2.1.2 Setting defaults for multiple scenes

set_draw_defaults (opt1, . . . , optm) [function]
set_draw_defaults ()

The first line sets up user defaults for options to be used for all subsequent scenes.
The second line removes all existing user defaults for the subsequent scenes.

5.3.2.1.3 Predefined personal sets of options

In maxima-init.mac I have predefined lists of personal default options: my_general_options,
my_2d_options and my_3d_options. They can be incorporated as needed in any
scene by simply including the respective symbols as global options.

(%i1) draw3d(implicit(x^2+y^2=z^2,x,-1,1,y,-1,1,z,-1,1),
my_general_options,my_3d_options);

Alternatively, they can be permanently assigned by set_draw_defaults. This assign-
ment is not yet done in maxima-init.mac, because it depends on the dimension of
the plot to be created.

(%i1) apply(set_draw_defaults,my_general_options);
(%i2) draw3d(implicit(x^2+y^2=z^2,x,-1,1,y,-1,1,z,-1,1,my_3d_options));

Or in case two lists shall be combined:

(%i1) apply(set_draw_defaults,append(my_general_options,my_3d_options));
(%i2) draw3d(implicit(x^2+y^2=z^2,x,-1,1,y,-1,1,z,-1,1));

45

5.3.2.1.4 User_preamble

This option allows to specify certain gnuplot settings which cannot be incorporated
with the usual syntax for options.

user_preamble = "set opt1; . . . ; set optn"

Options are specified by using gnuplot’s set command followed by the option and
possible values. Options are separated by a semicolon.

user_preamble = "set raxis; set grid polar; set size 1.1,1.1"

5.3.2.1.4.1 Predefined personal user_preambles

In maxima-init.mac I have a predefined list of options for the user_preamble in
my_user_preamble which can be easily incorporated into a scene.

(%i1) draw2d(explicit(x,x,0,1),user_preamble=my_user_preamble);

The user preamble of a specific scene can contain other options as well.

(%i1) draw2d(polar(1,theta,0,2*%pi),user_preamble=append(my_user_preamble
,["set raxis","set grid polar"]);

5.3.3 2D

gr2d (

opt1, . . . , optm,
�

grph_obj1, . . . , grph_objn) [scene constructur]

This is the constructor for a single 2D scene to be used as an argument to function
draw. Multiple graphical objects gobj1, . . . , gobjn can be plotted within the scene
under global options opt1, . . . , optm.

draw2d (

opt1, . . . , optm,
�

grph_obj1, . . . , grph_objn) [function]
wxdraw2d (...) [function]

These two functions, see this chapter’s introduction for their difference, are a short-
cut for draw(gr2d(

opt1, . . . , optm,
�

grph_obj1, . . . , grph_objn)).

5.3.3.1 Explicit plot

explicit (f, x, min, max) [graphical object]

A graphical object of this type plots function f, given in explicit form, with the inde-
pendent variable x in the range from x=min to x=max.

5.3.3.1.1 Piecewise defined function

In combination with the global options xrange and yrange it is possible to plot a
piecewise defined function.

(%i1) draw2d(explicit(0.5,x,0,1),explicit(1,x,1,2),explicit(1.5,x,2,3),
xrange=[0,3],yrange=[0,2]);

46

Figure 5.11 – Plotting a piecewise defined func-
tion with draw.

5.3.3.2 Implicit plot

explicit (f, x, min, max) [graphical object]

A graphical object of this type plots function f, given in implicit form, with dependent
variable x in the range from x=min to x=max. Note that in combination with the
global option xrange it is possible to plot a piecewise defined function.

5.3.3.3 Polar plot

polar (radius, ang, ngmn, ngm) [graphical object]

Plots the radius as a function of the angle in the given range. This object can be
plotted with an underlying polar grid, see thread in maxima-discuss from March
2019.

(%i1) draw2d(polar(1-(theta/(2*%pi)),theta,0,2*%pi), xrange=[-1,1],
yrange=[-1,1], proportional_axes = xy, user_preamble="set raxis; set
grid polar");

Underlying cartesian and polar grids can be combined, too.

(%i1) draw2d(polar(1-(theta/(2*%pi)),theta,0,2*%pi), xrange=[-1,1],
yrange=[-1,1], proportional_axes = xy, grid=true, user_preamble="set
raxis; set grid polar");

5.3.4 3D

gr3d (

opt1, . . . , optm,
�

grph_obj1, . . . , grph_objn) [scene constructur]

This is the constructor for a single 3D scene to be used as an argument to function
draw. Multiple graphical objects gobj1, . . . , gobjn can be plotted within the scene
under global options opt1, . . . , optm.

draw3d (

opt1, . . . , optm,
�

grph_obj1, . . . , grph_objn) [function]
wxdraw3d(...) [function]

47

Figure 5.12 – Plotting a function in
polar coordinates and with an under-
lying polar grid with draw.

Figure 5.13 – Plotting a function in
polar coordinates and with aunder-
lying cartesian and polar grids with
draw.

These two functions, see this chapter’s introduction for their difference, are a short-
cut for draw(gr3d(

opt1, . . . , optm,
�

gobj1, . . . , gobjn)).

5.3.4.1 Explicit plot

explicit (ƒ , , mn, m, y, ymn, ym) [graphical object]

A graphical object of this type plots function f, given in explicit form, with the inde-
pendent variables x and y in the given ranges.

Just like in the 2D case, in combination with the global options xrange, yrange and
zrange it is possible to plot a piecewise defined function.

5.3.4.2 Implicit plot

implicit (ƒ , , mn, m, y, ymn, ym, z, zmn, zm) [graphical object]

48

A graphical object of this type plots function f, given in implicit form, with dependent
variable x in the range from x=min to x=max. Note that in combination with the
global option xrange it is possible to plot a piecewise defined function.

5.3.5 List of available options

proportional_axes=
�

y
�

�yz
�

default: none [plot option]

Displays with the specified axes proportional to their relative lengths. The value xy
can be used for 3D, too.

xrange=[min,max] default: auto [plot option]

Specifies the range of the x-axis for this scene. If this option is missing, the minimal
range used by the graphical objects will be shown in the scene.

yrange=[min,max] default: auto [plot option]

Specifies the range of the y-axis for this scene. If this option is missing, the minimal
range used by the graphical objects will be shown in the scene.

49

Chapter 6

Batch Processing

50

Part III

Concepts of Symbolic
Computation

51

Chapter 7

Data types and structures

7.1 Introduction

For the data type string see section 30.1.

7.2 Numbers

7.2.1 Introduction

7.2.1.1 Types

Maxima distinguishes four generic types of numbers: integer, rational number,
floating point number and big floating point number. There is no generic type for
complex numbers.

7.2.1.2 Predicate functions

numberp (expr) [predicate function]

If expr evaluates to an integer, a rational number, a floating point number or a
big floating point number, true is returned. In all other cases (including a complex
number) false is returned.

Note. The argument to this and the following predicate functions described in this
section concerning numbers must really evaluate to a number in order for the func-
tion to be able to return true. A symbol that does not evaluate to a number, even
if it is declared to be of a numerical type, will always cause the function to return
false. The special predicate function featurep (symbol, feature) can be used to test
for such merely declared properties of a symbol.

(%i1) c;
(%o1) c
(%i2) declare(c, even);
(%o2) done
(%i3) featurep(c, integer);
(%o3) true
(%i4) integerp(c);
(%o4) false
(%i5) numberp(c);

52

(%o5) false

7.2.2 Integer and rational numbers

7.2.2.1 Representation

7.2.2.1.1 External

Integers are returned without a decimal point. Rational numbers are returned as a
fraction of integers. Arithmetic calculations with interger and rational numbers are
exact. In principal, integer and rational numbers can have an unlimited number of
digits.

(%i1) a:1;
(%o1) 1
(%i2) b:-2/3;

(%o2) −
2

3

(%i3) 100!;
(%o3) 933262154439441526816992388562667004907159682643816214685929\

638952175999932299156089414639761565182862536979208272237582\
51185210916864000000000000000000000000

7.2.2.1.2 Internal

(%i1) a:1/2;

(%o1)
1

2

(%i3) :lisp $a
((RAT SIMP) 1 2)

7.2.2.1.2.1 Canonical rational expression (CRE)

7.2.2.2 Predicate functions

(%i1) a:1$ b:2$ c:0$ d:3/4;
(%i5) integerp(a);
(%o5) true
(%i6) evenp(c);
(%o6) true
(%i7) oddp(a-b);
(%o7) true
(%i8) nonnegintegerp(2*c*a);
(%o8) true
(%i9) ratnump(a+d);
(%o9) true

53

integerp (expr) [Predicate function]

If expr evaluates to an integer, true is returned. In all other cases false is returned.

evenp (expr) [Predicate function]

If expr evaluates to an even integer, true is returned. In all other cases false is
returned.

oddp (expr) [Predicate function]

If expr evaluates to an odd integer, true is returned. In all other cases false is
returned.

nonnegintegerp (expr) [Predicate function]

If expr evaluates to a non-negative integer, true is returned. In all other cases false
is returned.

ratnump (expr) [Predicate function]

If expr evaluates to an integer or a rationl number, true is returned. In all other
cases false is returned.

7.2.2.3 Type conversion

7.2.2.3.1 Automatic

If any element of an expression that does not contain floating point numbers evalu-
ates to a rational number, then all integers in this expression are, when evaluated,
converted to rational numbers, too, and the value returned is a rational number.

7.2.2.3.2 Manual

rationalize (expr) [Function]

Converts all floating point numbers and bigfloats in expr to rational numbers. Max-
ima knows a lot of identities but applies them only to exactly equivalent expres-
sions. Floats are considered inexact so the identities aren’t applied. rationalize
replaces floats with exactly equivalent rationals, so the identities can be applied.

It might be surprising that rationalize (0.1) does not equal 1/10. This behavior is
because the number 1/10 has a repeating, not a terminating binary representation.

(%i1) rationalize(0.1);

(%o1)
3602879701896397

36028797018963968

Note. The exact value can be obtained with either function fullratsimp (expr) or, if
a CRE form is desired, with rat(expr).

(%i1) rat(0.1);
rat: replaced 0.1 by 1/10 = 0.1

(%o1) /R/
1

10

54

7.2.3 Floating point numbers

7.2.3.1 Ordinary floating point numbers

Maxima uses floating point numbers (floating points) with double presicion. Inter-
nally, all calculations are carried out in floating point.

Floating point numbers are returned with a decimal point, even when they denote
an integer. The decimal point thus indicates that the internal format of this number
is floating point and not integer.

(%i1) a:1;
(%o1) 1
(%i2) float(a);
(%o2) 1.0

In scientific notation, the exponent of a floating point number can be separated by
either "d", "e", or "f". Output is always returned with "e", as it is used in all internal
calculations. Up to a certain number of digits, floating points given in scientific
notation are returned in normal, non-exponential form.

(%i1) a:2.3e3;
(%o1) 2300.0
(%i2) b:3.456789e-47
(%i1) 3.456789e-47

The file scientific-engineering-format.lisp1, if loaded, provides a feature for
having all floating points be returned in scientific notation, with one non-zero digit
in front of the decimal point and the number of significant digits according to the
value of fpprintprec. This feature is activated by setting the option variable scien-
tific_format_floats.

(%i1) load("scientific-engineering-format.lisp")$
(%i2) scientific_format_floats:true$
(%i3) a:2300.0;
(%o3) 2.3e3

Another feature of this file allows for all floating points to be returned in engineer-
ing format, that is with an exponent that is a multiple of three, with 1-3 non-zero
digits in front of the decimal point and the number of significant digits accord-
ing to the value of fpprintprec. If set, engineering_format_floats overrides scien-
tific_format_floats.

(%i1) engineering_format_floats:true$
(%i2) b:0.23
(%o2) 230.0e-3

If any element of an expression that does not contain bigfloats evaluates to a float-
ing point number, then all other numbers in this expression are, when evaluated,
transformed to floating point, and the numerical value returned is a floating point
number.

(%i1) a:1/4; b:23.4e2;

1RS only. In standard Maxima the file engineering-format.lisp provides only the engineering format.

55

(%o1)
1

4

(%o1) 2340.0
(%i2) a+b+c;
(%o2) 2340.25 + c

7.2.3.2 Big floating point numbers

In principal, big floating point numbers (bigfloats) can have an unlimited presicion.

Bigfloats are always represented in scientific notation, the exponent being sepa-
rated by "b".

If any element of an expression evaluates to a bigfloat number, then all other num-
bers in this expression, including ordinary floating point numbers, are, when evalu-
ated, converted to bigfloats, and the numerical value returned is a bigfloat.

bfloatp (expr) [Predicate function]

If expr evaluates to a big floating point number, true is returned. In all other cases
false is returned.

bfloat(expr) [Function]

Converts all numbers in expr to bigfloats and returns a bigfloat. The number of
significant digits in the returned bigfloat is specified by the option variable fpprec.

fpprec Default value: 16 [Option variable]

Sets the number of significant digits for output of and for arithmetic operations on
bigfloat numbers. This does not affect ordinary floating point numbers.

(%i1) bfloat(%pi);
(%o1) 3.141592653589793b0
(%i2) fpprec:32$ bfloat(%pi);
(%o2) 3.1415926535897932384626433832795b0

7.2.4 Complex numbers

7.2.4.1 Introduction

7.2.4.1.1 Imaginary unit

%i [special variable]

In Maxima the imaginary unit  with 2 = −1 is written as %i.

(%i1) sqrt(-1);
(%o1) 

(%i2) %i^2;
(%o2) -1

56

7.2.4.1.2 Internal representation

There is no generic data type for complex numbers. Maxima represents a complex
number in standard form as a sum  +  b, realpart and imagpart each being of
one of the four generic types of numbers, see sect. 7.2.1.1. More complicated
expressions involving complex numbers are represented just as real valued ones,
with the only difference that the special variable %i appears in them. This variable
is treated as would be any other variable.

(%i1) r: 3+%i*5;
(%o1) 5i + 3
(%i2) :lisp $r
((MPLUS SIMP) 3 ((MTIMES SIMP) 5 $%I))
(%i3) p: polarform(r);

(%o1)
p

34e rctn
5
3

(%i4) :lisp $p
((MTIMES SIMP) ((MEXPT SIMP) 34 ((RAT SIMP) 1 2))
((MEXPT SIMP) $%E ((MTIMES SIMP) $%I ((%ATAN SIMP) ((RAT SIMP) 5 3)))))

7.2.4.1.3 Canonical order

The canonical order in which Maxima returns a complex-valued expression does not
differ from the order of an equivalent expression which replaces %i by any other
variable. All the rules for determining the canonical order, including the effect of
powerdisp, therefore are completely unaware of complex numbers.

(%i5) powerdisp:false$ /* default */
a + b*%i;
1 + 2*%i;
1 + b*%i;
-b*%i +1;

(%o2) ib + a
(%o3) 2i + 1
(%04) ib + 1
(%05) 1 - ib
(%i6) z+k*%i+b+a*%i+4+3*%i+2-%i;
(%o6) z + ik + b + ia + 2i + 6
(%i6) z+k*%j+b+a*%j+4+3*%j+2-%j;
(%o6) z + %jk + b + %ja + 2%j + 6

7.2.4.1.4 Simplification

Complex expressions are, in contrast to real ones, not always simplified as much as
possible automatically. Simplification of products, quotients, roots, and other func-
tions of complex expressions can usually be accomplished by applying rectform.

(%i1) (2+%i)*(3-%i);
(%o1) (3 − ) ( + 2)
(%i2) rectform(%);
(%o2)  + 7

(%i3) (2+%i)/(3-%i);

57

(%o3)
 + 2

3 − 
(%i4) rectform(%);

(%o4)


2
+
1

2

7.2.4.1.5 Properties

A variable can be declared the property real, complex, or imaginary. These prop-
erties are recognized by the functions of section 7.2.4.2 and 7.2.4.3. Note that
these functions consider symbols, unless declared otherwise (complex, imaginary)
or evaluating to a complex expression, as real.

(%i1) declare(z,complex,r,real)$

7.2.4.1.6 Code

The code of functions and variables for complex numbers is contained in file conju-
gate.lisp.

7.2.4.1.7 Generic complex data type

There have been atempts in Maxima to introduce a generic data type for complex
numbers, see Maxima-discuss thread Complex numeric type - almost done in nu-
meric.lisp but not activated - why? (August 2017).

7.2.4.2 Standard (rectangular) and polar form

Maxima distinguishes standard (rectangular) and polar form of complex-valued ex-
pressions. The standard form is obtained by function rectform, the polar form by
function polarform. We get the real part of an expression in standard form with func-
tion realpart, the imaginary part with imagpart. Function cabs returns the complex
absolute value, carg the complex argument of an expression in polar form.

Note that these functions consider symbols, unless declared otherwise (complex,
imaginary), see section 7.2.4.1.5, or evaluating to a complex expression, as real.

7.2.4.2.1 Standard (rectangular) form

rectform (expr) [function]

Converts a complex expression expr to standard form  +  b with , b ∈ R. Note
that e.g. for a complex function this decomposition is always possible. While the
imaginary part is parenthezised when it contains more than one element, this is
not done for the real part. If expr is an equation, both sides are decomposed
separately. rectform recognizes if a variable has been declared any of the properties
real, imaginary or complex.

(%i1) rectform(sqrt(2)*%e^(%i*%pi/4));
(%o1) i + 1
(%i2) expr: z+k*%i+b+a*%i+4+3*%i+2-%i;

58

(%o2) z + ik + b + ia + 2i + 6
(%i3) rectform(expr);
(%o3) z + i(k + a + 2) + b + 6
(%i5) declare(z,complex,b,real)$ rectform(expr);
(%o5) Re(z) + i(Im(z) + k + a + 2) + b + 6

realpart (expr) [function]
imagpart (expr) [function]

Return the real resp. imaginary part of expr. These functions work on expressions
involving trigonometric and hyperbolic functions, as well as square root, logarithm,
and exponentiation.

(%i6) realpart(expr);
(%o6) z+b+6
(%i7) imagpart(expr);
(%o7) k+a+2

7.2.4.2.2 Polar coordinate form

polarform (expr) [function]

Converts a complex expression to the equivalent polar coordinate form

r e φ = r
�

cosφ +  sinφ
�

with r being the complex absolute value and φ the complex argument.

cabs (expr) [function]
carg (expr) [function]

Return the complex absolute value resp. the complex argument of expr.

(%i1) polarform(3+4*%i);
(%o1) 5e rctn

4
3

(%i2) polarform(a+b*%i);

(%o2)
Æ

2 + b2 e atan2 (b,)

(%i3) cabs(a+b*%i);

(%o3)
Æ

2 + b2

(%i4) carg(a+b*%i);
(%o4) atan2 (b, )

7.2.4.3 Complex conjugate

conjugate (expr) [function]

Returns the complex conjugate of expr. Symbols, unless declared otherwise (com-
plex, imaginary) or evaluating to a complex expression, are considered real. con-
jugate knows identities involving complex conjugates and applies them for simplifi-
cation, if it can determine that the arguments are complex.

59

(%i1) conjugate(a+b*%i);
(%o1) a-ib
(%i2) conjugate(c);
(%o2) c
(%i3) declare(d,imaginary)$ conjugate(d);
(%o4) -d
(%i5) polarform(1+2*%i);

(%o5)
p

5e rctn2

(%i6) conjugate(%);

(%o6)
p

5e− rctn2

(%i7) conjugate(a1*a2);
(%o7) a1 a2
(%i8) declare([z1,z2],complex)$ conjugate(z1*z2);

(%o9) z1 z2

(%i10) f:a+b*%i$ (f+conjugate(f))/2;
(%o10) a

7.2.4.3.1 Internal representation

Internally, the complex conjugate is represented in the following way:

(%i1) declare(a,complex)$ b:conjugate(a);

(%o1) 

(%i2) :lisp $b
(($CONJUGATE SIMP) $A)

7.2.4.4 Predicate function

complexp (expr) [own function]

If expr evaluates to a complex number, true is returned. In all other cases false is
returned.

complexp(expr):=if numberp(float(realpart(expr)))
and numberp(float(imagpart(expr))) then true;

(%i1) complexp(2/3);
(%o1) true
(%i2) complexp((2+3*%i)/(5+2*%i));
(%o2) true
(%i3) polarform(2+3*%i);

(%o3)
Æ

(13)e rctn
3
2

(%i4) complexp(%);
(%o4) true
(%i5) complexp(3*cos(%pi/2)+7*%i*sin(0.5));
(%o5) true
(%i6) complexp(a+b*%i);
(%o6) false

60

7.3 Boolean values

7.4 Constant

7.5 Sharing of data

It is very important to understand a concept employed not only in Lisp and Maxima,
but also in many other programming languages and CAS’, the concept of sharing
data instead of copying them. Assignment of a list or matrix (or a vector, which is
always a list or a matrix) from symbol a to symbol b will not create a copy of this
data structure which then belongs to b, but will share the existing data structure
belonging to symbol a. This means that symbol b will only receive a pointer to the
existing data structure, not a new one with the same values as the one of symbol
a.

Now if symbol a is killed or is assigned a completely new data structure, the old
data structure will remain belonging only to symbol b. But if the old data structure
of symbol a is only modified in the value of some element, symbol b will evaluate
to this modified data structure of symbol a. And vice versa, if symbol b modifies
the value of some element of the shared data structure, symbol a will evaluate to
this modified structure.

(%i1) a:[1,2,3];
(%o1) [1,2,3]
(%i2) b:a;
(%o2) [1,2,3]
(%i3) a:[4,5,6];
(%o3) [4,5,6]
(%i4) b;
(%o4) [1,2,3]

(%i1) a:[1,2,3];
(%o1) [1,2,3]
(%i2) b:a;
(%o2) [1,2,3]
(%i3) a[2]:x$ a;
(%o4) [1,x,3]
(%i5) b;
(%o5) [1,x,3]
(%i6) b[3]:y$ b;
(%o7) [1,x,y]
(%i8) a;
(%o8) [1,x,y]

Note: Adding columns or rows to an existing matrix with addcol or addrow will
create a new data structure with respect to sharing.

In order to create a real copy of an existing list or matrix, the functions copylist and
copymatrix have to be used.

61

Chapter 8

List, matrix, structure

8.1 List

8.1.1 makelist

makelist (

epr

, n
��

)
�

� [function]
makelist (epr, 

, 0
�

m

, step
�

)
�

�

makelist (
�

epr
�

� [epr1, . . . , eprn]
�

, , st)

This is a very powerful function to create lists from expressions and/or other lists.
There are three general forms, each of them with some possible variations.

The first form ...

The second form ...

For an example see the example to the discrete plot of plot2d.

The third form returns a list whose elements are evaluations of expr or sublists
being evaluations of epr1, . . . , eprn. These expressions are functions of vari-
able x, which takes its values running through list. makelist’s return value has
as many elements as list has, i.e. length(list) elements. For j running from 1
through length(list), the jth element of the list returned is given by ev(expr,x=list[j])
or ev([epr1, . . . , eprn],x=list[j]).

For an example see the second example to the function rk implementing the Runge-
Kutta method for numerically solving a first order ODE.

8.1.2 create_list

8.2 Matrix

8.3 Structure

62

Chapter 9

Expression

9.1 General definitions

Any meaningful combination of operators, symbols and numbers is called an ex-
pression. An expression can be a mathematical expression (numerical, symbolical,
or a combination of both), but also a function call, a function definition, any other
program statement (in Lisp called a form) or even a whole program.

An expression is built up of elements, which are the operators, symbols and num-
bers. An expression consisting of only one element is called an atom or atomic
expression.

Expressions are structured, so that they can be subdivided into subexpressions. A
subexpression is itself an expression, which can again be subdiveded. Thus, an
expression can have different levels of subdivision and can be viewed as having a
tree structure.

A non-atomic subexpression is called complete, if it is an operand together with all
of its arguments. For example,  + y + z is a complete subexpression of 2 ∗ ( +
y + z)/ while  + y is not. Note that part can select an incomplete subexpression
when given a list as the last argument.

9.2 Forms of representation

There are three different forms of representing expressions in Maxima: the user
visible form (UVF), the general internal form (GIF) and another, specific internal
representation called canonical rational expression (CRE). There are fundamental
differences between these representations which the user has to be aware of.

9.2.1 User visible form (UVF)

The user visible representation (UVF) is the way Maxima displays an expression to
the user. Most often, the user will also use this representation to enter an expres-
sion. For example, a fraction like 1/

p

() is entered and displayed as a fraction.
If, instead, it is entered in exponention form −1/2, which is possible, it will still be
displayed as a fraction, not in exponential form.

Within the UVF we have different appearances of the expression, depending on the

63

user interface we work with (e.g. wxMaxima, iMaxima or the console), or depending
on whether display2d is set or not. However, in this chapter we are not concerned
about these differences in appearance, they belong into the chapter on input and
output or the chapter on different user interfaces. We don’t distinguish between
these appearances here, because the abstract UVF representation is the same for
all of them.

(%i1) 1/sqrt(x);

(%o1)
1

p

()

(%i2) x^(-1/2);

(%o2)
1

p

()

(%i3) display2d
(%o3) true
(%i4) display2d:false$
(%i5) 1/sqrt(x);
(%o5) 1/sqrt(x)

9.2.2 General internal form (GIF)

The general internal representation (GIF) is the way Maxima stores and handles
an expression internally. This is done on the Lisp level. But again, here we are
not concerned about how actually expressions are stored internally as lists, but in
the abstract representation of the expression. There are fundamental differences
in comparison to the UVF. Nevertheless, to make visible these differences of the
abstract format, we have to go down into the Lisp level and look at the lists.

(%i1) expr: x^(-1);

(%o1)
1



(%i2) :lisp $expr
((MEXPT SIMP) $X -1)
(%i2) 1/x;

(%o2)
1



(%i3) :lisp $%
((MEXPT SIMP) $X -1)
(%i3) x^(-1/2);

(%o3)
1

p

()
(%i4) :lisp $%
((MEXPT SIMP) $X ((RAT SIMP) -1 2))
(%i4) 1/sqrt(x);

(%o4)
1

p

()
(%i5) :lisp $%
((MEXPT SIMP) $X ((RAT SIMP) -1 2))
(%i5) -x/2;

64

(%o5)
−

2

(%i6) :lisp $%
((MTIMES SIMP) ((RAT SIMP) -1 2) $X)

What we see is that internally our top level fraction having a variable in the de-
nominator is always represented as an exponential form of the variable having a
negative exponent. Only if the denominator is a numerical value, a fraction will be
represented internally as such. This happens for example in the exponent of −1/2.
The expression −/2 is internally represented as the product −1/2 ∗ , and − is
represented as the product −1∗ .

In these examples we have seen some of the major differences between the UVF
and the GIF representation. A more comprehensive explanation of Maxima’s inter-
nal representation of expressions can be found in [FatemMGS79].

We also saw in the above examples, that the different levels of subexpressions,
that is: the tree structure of the overall expression, are nicely represented in Lisp
by nested lists.

9.2.3 Canonical rational expression (CRE)

The canonical rational expression (CRE) is an additional, special internal represen-
tation of expressions which Maxima uses in certain cases. It is explained in section
7.1 of [FatemMGS79, pp. 11–12].

9.3 Canonical order

When an expression is entered, Maxima orders its elements in a specifc way before
storing the expression. Maxima uses what is called the canonical order in any
representation (UVF, GIF, CTE). This helps Maxima (and, by the way, the user, too)
to determine, whether two expressions are literally equal or not. For example, the
terms of a sum of powers of the same variable are internally stored in the order of
increasing powers.

(%i1) powerdisp:true$
(%i2) x+x^3+x^2;
(%o2) x+x^2+x^3;
(%i2) :lisp$%
((MPLUS SIMP) $X ((MEXPT SIMP) $X 2) ((MEXPT SIMP) $X 3))

Note, however, that the order in which an expression is displayed in UVF depends
on whether the flag powerdisp is set to true or false (default). If it is false, display
is in the reverse canonical order. GIF is not affected by powerdisp.

65

9.4 Noun and verb

9.5 Equation

lhs = rhs [equation]
expr [equation]

An equation in Maxima usually has the form lhs = rhs, where lhs and rhs are expres-
sions and = is the equation operator. However, if a function requires an equation as
its argument, one side of it can be omitted if it is zero, and only the other side expr
be provided. In this case, Maxima assumes the equation epr = 0. So for example
∗ 2 + b∗  + c = 0 can be represented simply by ∗ 2 + b∗  + c.

9.6 Reference to subexpression

9.6.1 Identify and pick out subexpression

Internally, a Maxima expression is represented as a tree structure. The root, each
node and each leaf of this tree can be identified by a finite sequence of indices,
which are natural numbers including zero. In general, the main operator of the
expression is its root and carries the number zero, while its main operands are
numbered from left to right in the displayed form of the expression using natural
numbers starting from one. These indices, assigned to the root and the upmost
level of nodes, constitute level one of the identification scheme of the expression.
Within each of the main operands, a level two numbering is obtained in the same
way: zero is assigned to the main operand’s main operator, while its operands are
numbered from left to right starting with one. This numbering scheme is repeated
from level to level descending into the tree structure of the expression, until finally
an atom is reached, which is now uniquely identified by a finite sequence of indices.
We demonstrate this scheme with the help of the following function, which can pick
any node or leaf (or even a number of them from the same level) of the expression’s
tree structure.

part (expr, n1, . . . , nk−1,
�

nk
�

� [nk1, . . . , nk]
�

) [function]

Returns the root (main operator), a node (subexpression), or a leaf (atom) of the
displayed form of the expression expr. The part obtained from expr corresponds to
the finite sequence of indices n1, . . . , nk. At first, part n1 of expr is obtained, then
part n2 of that, etc. The value return is part nk of part nk−1 of . . . part n2 of part n1
of expr. If no indices are specified, expr is returned.

(%i1) eq:’diff(2*y,x) = a*y + (2+b)/x;

(%o1)
d

d
(2y) = y +

b + 2



(%i4) part(eq,0); part(eq,1); part(eq,2);
(%o2) =

(%o3)
d

d
(2y)

66

(%o4) y +
b + 2



(%i9) part(eq,1,0); part(eq,1,1); part(eq,1,2); part(eq,1,1,0); part(eq
,1,1,1);

(%o5) derivative
(%o6) 2y
(%o7) x
(%o8) *
(%o9) 2
(%i14) part(eq,2,0); part(eq,2,1); part(eq,2,2); part(eq,2,2,0); part(eq

,2,2,1);
(%o10) +
(%o11) ay

(%o12)
b + 2



(%o13) /
(%o14) b+2

If the last index is a list of indices, then a subexpression is returned which is made
up of multiple operands (subexpressions or atoms) of the last operator, each index
in the list standing for one. These operands are combined by their operator in the
expression.

(%i1) part(2*(x+y+z),2,[1,3]);
(%o1) x+z

Function part can also be used to obtain an element of a list, a row of a matrix, etc.

9.6.2 Substitute subexpression

substpart (repl, expr, n1, . . . , nk−1,
�

nk
�

� [nk1, . . . , nk]
�

) [function]

In expr the replacement repl is substituted for the subexpression

part (expr, n1, . . . , nk−1,
�

nk
�

� [nk1, . . . , nk]
�

),

and the new value of expr is returned. repl may be some operator to be substituted
for an operator of expr. In some cases repl needs to be enclosed in double-quotes
" (e.g. substpart ("+", a*b, 0) yields b + a).

9.7 Manipulate expression

9.7.1 Substitute pattern

9.7.1.1 subst: substitute explicite pattern

subst (new, old, expr) [function]
subst (old=new, expr)
subst ([eq_1,. . . ,eq_k], expr)

This function substitutes new for old everywhere in expr. old must be an atom or a
complete subexpression of expr. subst(old=new, expr) is equivalent to subst(new,

67

old, expr). eq_i are equations of the form old=new indicating multiple substitutions
to be done in expr, carried out in serial. See example after sublis.

As usual, all arguments are evaluated and can be quoted or, if necessary to enforce
evaluation, even double quoted, see example. This function allows for substituting
values (numbers or symbolic expressions) for symbols or vice versa.

If old or new are to be single-character operators, they must be enclosed in double-
quotes. Note, however, that, due to the differences between UVF and GIF, replacing
operators in an expression often does not yield the expected result and should be
avoided.

In any case, if the result of subst is not what was expected, one should take a
look at the GIF of the expression in order to find an explanation. Although subst is
implemented on the basis of Maxima’s rules and patterns mechanism, which itself
works strictly on the basis of GIF, some concessions have been made to the UVF
in subst. In general, any subexpression which can be selected by part and which
is complete can be replaced. For instance, in 1/

p

() the subexpression
p

() can
be replaced, although in GIF this subexpression does not exist. See sect. 14.5.1
for an alternative to subst working directly with rules and patterns, and therefore
strictly on the basis of GIF. You will see that this alternative is more powerful than
subst. The most powerful tool for substituting mathematical patterns, however, is
ratsubst.

(%i1) expr:x*a+(x*b)/2;

(%o1)
b

2
+ 

(%i2) e:c+d$
(%i3) x:’e$
(%i4) expr;

(%o4)
b

2
+ 

(%i5) ev(expr);

(%o5)
be

2
+ e

(%i6) ev(expr,eval);

(%o6)
b (d + c)

2
+  (d + c)

(%i8) subst(’’x,’x,expr);

(%o8)
b (d + c)

2
+  (d + c)

(%i9) subst(x,’’x,%);

(%o9)
be

2
+ e

(%i7) subst(’x,x,%);

(%o7)
b

2
+ 

sublis ([eq_1,. . . ,eq_k], expr) [function]

68

This is the same as the corresponding form of subst, but the substitutions are done
in parallel. As opposed to subst, the left side of the equation must be an atom; a
complete subexpression of expr is not allowed. The form with a single equation as
the first argument is not allowed, either.

(%i1) subst([a=b, b=c], a+b);
(%o1) 2 c
(%i2) sublis([a=b, b=c], a+b);
(%o2) c+b

9.7.1.2 ratsubst: substitute implicit mathematical pattern

ratsubst (new, old, expr) [function]

Just like subst this function substitutes new for old everywhere in expr. But in con-
trast to subst, all three arguments have to be mathematical expressions. old does
not have to be an atom or a complete subexpression of expr, it does not even have
to be a subexpression explicitely visible in expr. In general, ratsubst can substi-
tute any subexpression which could be made explicit by any kind of equivalence
transformation of expr.

For instance, old can be a subexpression visible only in expand(expr) or, vice versa,
only in factor(expr). If radsubstflag is true, old can be a root, which is not explicit
in expr, but which could be made explicit by an equivalence transformation. To
illustrate this, we give an easy alternative to the example given in sect. 14.5.1.

(%i1) radsubstflag:true$
(%i2) ratsubst(b,sqrt(x),x);

(%o2) b2

(%i3) ratsubst(b,sqrt(x),x^(-3/2));

(%o3)
1

b3

radsubstflag default: false [option variable]

When true, this flag allows ratsubst to substitute roots, which are not explicit in
expr, see example above.

9.7.2 Box and rembox

box (expr) [function]
rembox (expr) [function]

If an expression expr is the argument of function box, it is called a boxed expression.
A boxed expression does not evaluate to its content, so it is effectively excluded
from computations. However, box evaluates its argument. The return value is an
expression with box as the operator and expr as the argument. rembox removes
all boxes within its argument, so any boxed expressions it contains are evaluated.
Thus, the box-rembox mechanism is useful for temporarily excluding parts of an
expression from being evaluated. See function PullFactorOut for an example.

69

(%i1) a:2$ box(a);
(%o1) 2
(%i2) box(a)*3;
(%o2) 3(2)
(%i3) part(box(a),0);
(%o3) box
(%i4) part(box(a),1);
(%o4) 2
(%i5) %*3;
(%o5) 6
(%i6) rembox(a*box(a)*box(4));
(%o6) 16

70

Chapter 10

Operators

10.1 Defining and using operators

10.1.1 Function notation of an operator

Infix operator function definition, example tensor product:
infix("tp");
a tp b := transpose(vlist(a)).transpose(transpose(vlist(b)));
This can alternatively be defined by
"TP"(a,b) := transpose(vlist(a)).transpose(transpose(vlist(b))); "="(a,b) is a func-
tional notation equivalent to a=b.

10.1.2 Miscellaneous

Any prefix operator can be used with or without parentheses: not a <=> not(a) -a
<=> -(a)

10.2 System defined operators

10.2.1 Identity operators and functions

Note. : and :: are the assignment operators.

10.2.1.1 Equation operator

= [infix operator]

This is the equation operator. Chains like a = b = c are not allowed. See sect. 9.5
for the exceptional case where the equation operator can be omitted.

When Maxima encounters an equation, its arguments, which means the lhs and
the rhs, are evaluated and simplified separately. The operator = by itself does
nothing more. It does not compare the two sides at all and the two sides are not
simplified against each other. An expression like a = b represents an unevaluated
equation, which might or might not hold. Unevaluated equations may be passed as
arguments to solve, algsys or some other functions.

Only is(a = b) and some other functions, namely if, while, unless, and, or, and not,
will evaluate the equation a = b to true or false.

71

Assumptions of equality cannot be specified with the = operator, only with function
equal.

(%i1) c:3$ d:3$
(%i3) a+a=c+d;
(%o3) 2a=6
(%i4) a+b=a+e;
(%o4) b+a=e+a;

Any desired simplification across the = operator has to be carried out manually. For
example, functions rhs(eq) and lhs(eq) return the rhs and lhs, respectively, of an
equation or inequation. Using them, we can indirectly achieve some basic simpli-
fication of an unevaluated equation by subtracting one side from the other, thus,
bringing them both to one side. Of course, the user may write his own simplifica-
tion routines to handle specific situations, as for example to subtract equal terms
on both sides, to divide both sides by a common factor, etc.

(%i1) c:3$ d:3$
(%i3) eq: a+a=c+d;
(%o3) 2a=6
(%i4) eq/2;
(%o4) a=3

(%i5) eq: a+b=a+e;
(%o5) b+a=e+a;
(%i6) lhs(eq)-rhs(eq)=0;
(%o6) b-e=0;

10.2.1.2 Inequation operator

[infix operator]

The negation of = is represented by #, which is the inequation operator. Just like
for an equation, only the lhs and rhs will be evaluated separately, the returned
expression constitutes an unevaluated inequation.

Only is(a # b) and the other functions mentioned above will evaluate the inequation
a # b to true or false. Note that because of the rules for evaluation of predicate
expressions (in particular because not expr causes evaluation of expr), not a = b is
equivalent to is(a # b), and not to a # b.

Assumptions of inequality cannot be specified with the # operator, only with func-
tion notequal.

10.2.1.3 equal, notequal

equal (a,b) [function]
notequal (a,b) [function]

These functions by themselves, like = and #, do nothing more than evaluate both
arguments separately. Unlike a = b, however, equal(a,b) is not an unevaluated

72

equation which can be passed as an argument to solve, algsys or some other func-
tions. Instead, Functions equal and notequal can be used to specify assumptions
with assume.

Function is tries to evaluate equal(a,b) to a Boolean value. is(equal(a,b)) evalu-
ates equal(a,b) to true, if a and b are mathematically equivalent expressions. This
means, they are mathematically equal for all possible values of their arguments.
Comparison is carried out and equivalence established by checking the Maxima
database for user-postulated assumptions, and by checking whether ratsimp(a-b)
returns zero.

When is fails to reduce equal to true or false, the result is governed by the global
flag prederror. When prederror is true, is returns an error message. Otherwise
(default), it returns unknown.

notequal (a,b) represents the negation of equal(a,b). Because not expr causes
evaluation of expr, not equal(a,b) is equivalent to is(notequal(a,b)).

Assumptions are stored as Maxima properties of the variables concerned. Thus,
comparison can be carried out and equivalence established between variables which
are unbound, having no (numerical or symbolical) values assigned. But compari-
son can also be carried out and equivalence established by retrieving the variables’
values (process of evaluation, dereferencing) and subsequent simplification. Of
course, a combination of both methods is possible, too.

(%i1) c:3$ d:3$
(%i3) equal(a+a, c+d);
(%o3) 2a=6
(%i4) equal(a+b, a+e);
(%o4) b+a=e+a;

(%i5) assume(equal(a,b))$ assume(e<f)$
(%i6) is(a=b);
(%o6) false
(%i7) is(equal(a,b));
(%o7) true
(%i8) is(equal(e,f));
(%o8) false

(%i9) is(x^2-1 = (x+1)*(x-1));
(%o9) false
(%i10) is(equal(x^2-1, (x+1)*(x-1)));
(%o10) true

(%i11) is(equal((a-1)*a, b^2-b));
(%o11) true

(%i12) is(equal(sinh(x), (%e^x-%e^-x)/2));
(%o12) unknown
(%i13) exponentialize: true$
(%i14) is(equal(sinh(x), (%e^x-%e^-x)/2));
(%o14) true

73

10.2.1.4 is, is(a=b), is(equal(a,b))

is (expr) [function]

Function is evaluates an (in)equation, a relation, or a function call of equal or
nonequal to a Boolean value. is(a = b) evaluates a = b to true if a and b, af-
ter each having been evaluated and simplified separately, which includes bringing
them into canonical form, are syntactically equal. This means, string(a) is identical
to string(b). This is the case if a and b are atoms which are identical, or they are
not atoms and their operators are all identical and their arguments are all identical.
Otherwise, is(a = b) evaluates to false; is never evaluates to unknown.

Note that in contrast to function equal, is(a=b) does not check assumptions in Max-
ima’s database. Thus, Maxima properties of a and b are not considered, only their
values. Assumptions of equality cannot be specified with the = operator, only with
function equal.

(%i1) assume(a=b);
Error!
(%i2) assume(equal(a,b))$
(%i3) is(a=b);
(%o3) false
(%i4) is(equal(a,b));
(%o4) true

10.2.2 Relational operators

< [infix operator]
> [infix operator]
<= [infix operator]
>= [infix operator]

These are the relational operators. They are binary operators. Chains like a<b<c
are not allowed. Just like = and #, relational operators do nothing more than evalu-
ate and simplify their arguments separately. An expression like  < b is an uneval-
uated relational expression, which might or might not hold. Any desired simplifica-
tion across the relational operator has to be carried out manually. Function solve
does not accept relational expressions.

Relational operators can be used to specify assumptions with assume.

Function is tries to evaluate a relational expression like a<b to a Boolean value.
Comparison is carried out by checking Maxima’s database for user-postulated as-
sumptions, and by checking what ratsimp(a-b) returns. Thus, as for functions equal
and notequal, both Maxima properties of the variables concerned and their values
are considered.

(%i1) assume(-1<x, x<0)$
(%i2) is(diff((x-t)/(1+t),t)<0);
(%o2) true
(%i3) factor(diff((x-t)/(1+t),t));

74

(%o3) −
 + 1

(t + 1)2

When is fails to reduce a relational expression to true or false, the result is governed
by the global flag prederror. When prederror is true, is returns an error message.
Otherwise (default), it returns unknown.

In addition to function is, some other operators evaluate relational expressions to
true or false, namely if, while, unless, and, or, and not.

10.2.3 Logical (Boolean) operators

75

Chapter 11

Evaluation

11.1 Introduction to evaluation

For a general overview of the role and philosophy of the evaluator in a CAS system [FatemEv96]
[FatemEvR99]and for a comparison of its implementation in various existing CAS systems see

Richard Fateman’s paper from 1996, which can also be found on his homepage in a
revised version from 1999.

Evaluation in Maxima means dereferencing. If a symbol is bound, i.e. if it has a
value, or as we say refers to a value, then evaluation of a symbol means retrieving
this value. Evaluation is not to be confused with simplification.

A symbol which is not bound evaluates to itself.

(%i1) a;
(%o1) a

Consider the following example where a symbol a is bound to another symbol b
which itself has a value c. Usually Maxima will evaluate a only once, retrieving b. In
order to retrieve the value of b from a, we have to explicitly make Maxima evaluate
a again. To achieve such multiple evaluation, a function like ev has to be called.
Of course, we can also assign to a the value obtained from ev(a). Then a refers
directly to c without the detour over b.

(%i1) a:b;
(%o1) b
(%i2) b:c;
(%o2) c
(%i3) a;
(%o3) b
(%i4) ev(a);
(%o4) c
(%i5) a:ev(a);
(%o5) c
(%i6) a;
(%o6) c

11.1.1 Stavros’ warning note about ev and quote-quote

Mail from 3.11.2017 to maxima-discuss: NO NO NO NO NO

76

Double-quote does not "force evaluation" − it substitutes a value at read time. It
is a handy shortcut in interactive use, but I urge you to avoid it in general. For one
thing, you can’t prototype a calculation interactively and then package it up as a
function if you use ’ ’(...).

ev is another convenience function with some surprising behavior. In particular,
e(...,  = 1) is not equivalent to bock([ : 1], ...). For example, e(dƒ ƒ (,′ ),  =
1) gives an error, while bock([ : 1], dƒ ƒ (,′ )) gives 0. Since it performs an
evaluation, it also risks free-variable capture in programs (again, a problem when
you package up an interactive prototype). I always urge people to avoid ev as much
as possible. It is always cleaner and clearer to use subst rather than ev.

Trying to get ev to do what you want by clever use of ’(...) or ’ ’(...) is a fool’s
errand: you may get it to work in one case, but you will quickly find cases where it
isn’t quite right.

To recap:

ev(...) and ’ ’(...) are handy hacks, but have peculiar semantics and are best to
avoid.

11.2 Function ev

ev (expr

, rg1, . . . , rgn
�

)
�

� [function]
expr, rg1

, rg2, . . . , rgn
�

Function ev evaluates the expression expr in the environment specified by the argu-
ments rg1, . . . , rgn. These arguments are switches (Boolean flags), assignments,
equations, and functions from the list given below. ev returns the result (another
expression) of the evaluation.

An alternate top level syntax has been provided for ev, whereby one may just type
in the expression and its arguments separated by commas. This is not permitted as
part of another expression, e.g., in functions, blocks, etc. For an example see sect.
24.2.1.2.2.

The evaluation is carried out in steps, as follows.

1. First the environment is set up by scanning the arguments which may be any or
all of the following.

� simp causes expr to be simplified regardless of the setting of the switch simp
which inhibits simplification if false.

� noeval suppresses the evaluation phase of ev (see step (4) below). This is use-
ful in conjunction with the other switches and in causing expr to be resimplified
without being reevaluated.

� nouns causes the evaluation of noun forms (e.g. unevaluated user-defined
function calls, functions such as ’integrate or ’diff, functions previously used
undeclared which now have been declared) in expr.

See the example to gradef .

77

� expand causes expansion.

� expand (m, n) causes expansion, setting the values of maxposex and max-
negex to m and n respectively.

� detout causes any matrix inverses computed in expr to have their determinant
kept outside of the inverse rather than dividing through each element.

� diff causes all differentiations indicated in expr to be performed.

� derivlist (, y, z, . . .) causes only differentiations with respect to the indicated
variables.

� risch causes integrals in expr to be evaluated using the Risch algorithm. The
standard integration routine is invoked when using the special symbol nouns.

� float causes non-integral rational numbers to be converted to floating point.

� numer causes some mathematical functions (including exponentiation) with
numerical arguments to be evaluated in floating point. It causes variables in
expr which have been given numervals to be replaced by their values. It also
sets the float switch on.

� pred causes predicates (expressions which evaluate to true or false) to be
evaluated.

� eval causes an extra post-evaluation of expr to occur. (See step (5) below.)
eval may occur multiple times. For each instance of eval, the expression is
evaluated again.

� A where A is an atom declared to be an evaluation flag. evflag causes A to be
bound to true during the evaluation of expr.

� V: expression, or alternately V=expression causes V to be bound to the value
of expression during the evaluation of expr. Note that if V is a Maxima option,
then expression is used for its value during the evaluation of expr. If more than
one argument to ev is of this type, then the binding is done in parallel. If V is a
non-atomic expression, then a substitution rather than a binding is performed.

� F where F, a function name, has been declared to be an evaluation function.
evfun causes F to be applied to expr.

� Any other function names, e.g. sum, cause evaluation of occurrences of those
names in expr as though they were verbs.

See example of gradef .

� In addition, a function occurring in expr, e.g. F(x), may be defined locally
for the purpose of this evaluation of expr by giving F(x) := expression as an
argument to ev.

� If an atom not mentioned above or a subscripted variable or subscripted ex-
pression is given as an argument, it is evaluated and if the result is an equation

78

or assignment, then the indicated binding or substitution is performed. If the
result is a list, then the elements of the list are treated as though they were
additional arguments given to ev. This permits a list of equations to be given
(e.g. [X=1, Y=A**2]), or a list of names of equations (e.g., [%t1, %t2] where
%t1 and %t2 are equations) such as returned by solve.

The arguments of ev may be given in any order with the exception of substitution
equations which are handled in sequence, left to right, and evaluation functions
which are composed, e.g., ev (expr, ratsimp, realpart) is handled as realpart (rat-
simp (expr)). The simp, numer, and float switches may also be set locally in a block,
or globally in Maxima so that they will remain in effect until being reset. If expr is
a canonical rational expression (CRE), then the expression returned by ev is also a
CRE, provided the numer and float switches are not both true.

2. During step (1), a list is made of the non-subscripted variables appearing on
the left side of equations in the arguments or in the value of some arguments if
the value is an equation. The variables (subscripted variables which do not have
associated array functions as well as non-subscripted variables) in the expression
expr are replaced by their global values, except for those appearing in this list.
Usually, expr is just a label or % (as in %i2 in the example below), so this step
simply retrieves the expression named by the label, so that ev may work on it.

3. If any substitutions are indicated by the arguments, they are carried out now.

4. The resulting expression is then re-evaluated (unless one of the arguments was
noeval) and simplified according to the arguments. Note that any function calls in
expr will be carried out after the variables in it are evaluated and that ev(F(x)) thus
may behave like F(ev(x)).

5. For each instance of eval in the arguments, steps (3) and (4) are repeated.

11.3 Quote-quote operator ′ ′

′ ′expr [prefix operator]

The quote-quote operator ′ ′ (two single quote marks) modifies evaluation in input
expressions. Applied to a general expression expr, quote-quote causes the value
of expr to be substituted for expr in the input expression. Applied to the operator
of an expression, quote-quote changes the operator from a noun to a verb (if it
is not already a verb). The quote-quote operator is applied by the input parser;
it is not stored as part of a parsed input expression. The quote-quote operator is
always applied as soon as it is parsed, and cannot be quoted. Thus quote-quote
causes evaluation when evaluation is otherwise suppressed, such as in function
definitions, lambda expressions, and expressions quoted by single quote ’.

Quote-quote is recognized by batch and load.

11.4 Substitution

Maxima has three different functions which carry out substitutions: ev, at, and
subst.

79

11.4.1 Substituting values for variables

at (
�

epr
�

� [epr1, . . . , eprn]
�

,
�

eqn
�

� [eqn1, . . . , eqnn]
�

) [function]

Evaluates expr or the expressions in the list with variables assuming values as
specified in eqn or the list of equations. at carries out multiple substitutions in
parallel. Depending on the first argument, at returns a single expression or a list of
expressions.

Note that values do not necessarily mean numerical values. Symbols and even ex-
pressions can also be substituted for symbols. (Substituting expressions for expres-
sions sometimes is possible, sometimes not. Anyway, this use of at is discouraged.)

In particular, at allows to indicate that the derivative of an unspecified function is
to be evaluated at a certain point.

(%i1) at(x^2,x=x0);

(%o1) 02

(%i2) at(f(x),x=x0);
(%o2) f(x0)
(%i3) at(diff(f(x),x),x=x0);

(%o3)
d

d
f()

�

�

�

�

=0

80

Chapter 12

Simplification

12.1 Properties for simplification

12.2 General simplification

12.2.1 Conversion between (complex) exponentials and circular/hy-
perbolic functions

exponentialize (expr) [function]
exponentialize default: false [option variable]

The function exponentialize converts circular and hyperbolic functions in expr to
equivalent (complex) exponentials. This is useful for instance to be able to apply
solve to expr, see sect. 18.2.2.

If the option variable exponentialize is true, all circular and hyperbolic functions
encountered in the course of the following computations will be converted to (com-
plex) exponentials; so in this case it is not necessary any more to apply the function
to any expression. Flags exponentialize and demoivre cannot both be true at the
same time.

demoivre (expr) [function]
demoivre default: false [option variable]

The function demoivre converts (complex) exponentials in expr to equivalent cir-
cular functions. Note that while exponentialize is also capable of converting hy-
perbolic functions to their exponential equivalents, demoivre is not capable of the
inverse.

If the option variable demoivre is true, Maxima will try to convert all (complex)
exponentials encountered in the course of the following computations to circular
functions; so in this case it is not necessary any more to apply the function to any
expression. Flags demoivre and exponentialize cannot both be true at the same
time.

(%i1) exponentialize(2*cos(s)+sin(s/2));

(%o1) %e%s −
%

�

%e
%s
2 −%e−

%s
2

�

2
+%e−%s

81

(%i2) demoivre(%);

(%o2) 2cos (s) + sin
� s

2

�

(%i3) exponentialize(tanh(s));

(%o3)
%es −%e−s

%es +%e−s

(%i4) demoivre(%);

(%o4)
%es −%e−s

%es +%e−s

See sect. 18.2.2 for an application of exponentialize.

12.3 Trigonometric simplification

trigsimp kann nicht mit Komma nachgestellt werden.

12.4 Own simplification functions

12.4.1 Apply2Part

Apply2Part (
�

’function()
�

�
′λ-expr()

�

, expr

, 1, . . . , n

,
�

[j1, . . . , j]
�

�bt(j1, . . . , j)
���

)
. [function of rs_simplification]

Selectively applies function, which must be quoted1 and followed by parentheses
(either empty or with additional arguments to function2), to the part of expr, which
is specified by the following arguments in the way of the arguments of function
part. As in part, a list of selected terms can be specified as the last argument, or
the construction with allbut can be used. The complete expr with the substitution
accomplished is returned.

A lamba expression can be specified instead of a symbol for function. Again it
must be quoted and followed by parentheses (either empty or with additional argu-
ments).

Apply2Part can be used e.g. with functions factor, expand, ratexpand (which brings
terms to a common denominator), or trigsimp. Note that PullFactorOut has this
functionality already built in, so its combination with Apply2Part is unnecessary.

As an example, function being set to factor allows to selectively factor a part (or
even specific terms from a sum) anywhere in an expression. This constructs and
evaluates an expression of the form substpart(factor(part(expr, indices)),expr, in-
dices), where the last index can be a list of the terms of a sum to be factored. The
factor itself is specified only implicitly by this selection.

1ratexpand for instance is also a flag which by default evaluates to false.
2E.g. partfrac needs a second argument.

82

(%i1) expr: f(t)=a*x+b*y+c*x*y+d*y;
(%o1) f(t)=cxy+dy+by+ax
(%i2) Apply2Part(’factor(),expr,2,[1,2,3]);
(%o2) f(t)=(cx+d+b)y+ax
(%i3) Apply2Part(’factor(),expr,2,[1,4]);
(%o3) f(t)=x(cy+a)+dy+by
(%i4) Apply2Part(’factor(),%,2,[2,3]);
(%o4) f(t)=x(cy+a)+(d+b)y
(%i5) Apply2Part(’lambda([x],x^2)(),%,2,1,1);
(%o5) f(t)=x^2(cy+a)+(d+b)y

12.4.2 ChangeSign

ChangeSign (epr

, 1, . . . , n
�

) [function of rs_simplification]

Changes the sign of expr or the subexpression epr, 1, . . . , n specified as in func-
tion part. By applying this function to an expression twice, the minus sign can be
switched between two places, e.g. two factors, between numerator and denomina-
tor of a fraction, or between a product as a whole and one of its factors. The inner
function call should be tested alone before being wrapped by the second call, be-
cause the canonical order may be changed by the inner call. Note that the operator
of the sum −b is "+", with the operator of −b being "−" (b can be a subexpression).

(%i1) expr:-((a-b)/(c-d));

(%o1) −
 − b

c − d
(%i2) ChangeSign(ChangeSign(expr,1,1),1,2);

(%o2) −
b − 

d − c
(%i3) expr:f=(’diff(a,x)+((a+b)/(c-d)))/(h+j+log(d));

(%o3) ƒ =
b+
c−d +

d
d

j + h + log (d)

(%i4) ChangeSign(ChangeSign(expr,2,1,1,1),2,1,1);

(%o4) ƒ =
d
d −

−b−
c−d

j + h + log (d)

(%i5) expr:-s*(-a+b)*(-c+d);
(%o5) -(-a+b)*(-c+d)*s
(%i6) ChangeSign(ChangeSign(expr),2);
(%o6) (-a+b)*(c-d)*s

12.4.3 FactorTerms

FactorTerms ([ƒc1, . . . , ƒcm], expr

, 1, . . . , n
�

) [function of rs_simplification]

Factors out the factors ƒc1, . . . , ƒcn from the terms where they appear in the
subexpression specified by epr, 1, . . . , n. This function uses ratcoeff. Not every
term of the specified subexpression needs to contain one of the given factors. But
FactorTerms can’t work properly, if a term of the subexpression contains more than

83

one of the given factors. In this case, the result will equal the given subexpression,
which can be shown by expanding it again, but the desired factoring is impossible.
So in this case Apply2Part(factor) has to be used instead, which allows selecting
terms individually; here the specific factor to be factored out of the multi-factor
term is specified implicitly.

The complete expr with the substitution accomplished is returned.

(%i1) expr: y=a*3+b*4+b*c+d*a+e$
(%i2) FactorTerms([a,b],expr,2);
(%o2) y=e+a*(d+3)+b*(c+4)

12.4.4 PullFactorOut

PullFactorOut (
�

epr
�

�
′prt (epr, 1, . . . , n

,
�

[j1, . . . , j]
�

�bt(j1, . . . , j)
��

)
�

, ƒctor
�

)
. [function of rs_simplification]
PullFactorOut2 (expr

, ƒctor
�

) [function of rs_simplification]

Pulls factor out of expr and wraps it in a box which normally preceeds the remainder.
expr can be a product, fraction, sum, list, vector or matrix. If the remainder is a
fraction, a list or a matrix, it is placed in a second box in order for the first box not
to be pulled into the numerator or each element of the list or matrix. If no factor
is specified, the gcd is determined and pulled out. However, this does not make
sense and does not work for products or fractions.

If part of an expr is specified as in function part (note that this has to be quoted
here), only this part will be factored, but the whole expr will be returned. Thus,
combination of PullFactorOut with Apply2Part is not necessary. Giving the last pa-
rameter as a list of selected terms or using allbut to exclude selected terms as in
function part is also possible, see "‘Kugel rollte im Hohlkegel.wxm"’.

PullFactorOut2 is an experimental version with the same functionality, but not re-
quiring to put a box around the pulled out factor, unless -1 is pulled out of a matrix.

(%i1) v:r*CVect(cos(t),sin(t));

(%o1)





r cos(t)

r sin(t)





(%i2) PullFactorOut(v,r);

(%o2) (r)





cos (t)

sin (t)





(%i1) g1:-3*a*b/2;

(%o1) −
3b

2

(%i2) PullFactorOut(’part(g1,2),3/2);

(%o2) −
�

3

2

�

b

(%i3) g2:Fn=p+(a-(3*a*b/(2*c*d)))/(d+g);

84

(%o3) Fn = p +
 − 3b

2cd

g + d

(%i4) PullFactorOut(’part(g2,2,2,1,2),-3*a/2);

(%o4) Fn = p +

�

− 32
� �

b
cd

�

+ 

g + d

ElimCommon (equ) [function of rs_simplification]

On a recursive basis this function eliminates common factors and/or common terms
from both sides of the equation equ.

This function was written by Stavros Macrakis, 2016. It employs the global function
ElimCommonTerms.

85

Chapter 13

Knowledge database system

In Maxima, variables and user-defined functions can be associated not only with
values, but also with properties and with assumptions. Properties contain infor-
mation about the type of value the respective variable or function is supposed to
take, while assumptions limit the numerical range of their allowed values. Both
categories of information can be used by Maxima or by user-written functions for
computation and simplification of expressions comprising these variables.

Maxima’s mathematical knowledge database system was written by Michael Gene-
sereth while studying at MIT in the early 1970s. Today he is professor of computer
science at Stanford University.

Before looking closer at the information it contains, namely properties and assump-
tions, we will focus on general features of this database system. We describe its
user interface first, then some aspects of the implementation.

13.1 Facts and contexts: The general system

13.1.1 User interface

13.1.1.1 Introduction

Properties and assumptions associated with a Maxima symbol are called facts.
There are certain facts already provided by the system, for instance about general
and predefined mathematical constants such as e, i or π. In addition, the user may
assign one or more of a number of system-defined properties to any of his variables
or user functions. He can also define his own new property types, called features,
and assign them to symbols just like the system-defined properties. Finally, using
assumptions, he can impose restrictions on the numerical range of values to be
taken by a symbol denoting a variable or function.

Some, but not all Maxima functions recognize facts. For example, solve does not
consider assumptions (it was written before the knowledge database was intro-
duced into Maxima), whereas to_poly_solve, a more recent and sometimes more
powerful solver, does. User-written functions, of course, may also take facts into
account.

If they need certain information about user variables in order to proceed operating
on them, some Maxima functions will ask the user interactively at the time they are

86

called. This is a useful procedure in order to reach computational results, since the
user may not be aware of any such necessity in advance. He can, however, declare
the corresponding properties or assumptions prior to calling the function in order to
avoid these questions.

Maxima’s mathematical knowledge database system organizes facts in a hierarchi-
cal structure of contexts. The context named global forms the root of this hierarchy,
the parent of all other contexts. It contains information for instance about prede-
fined constants, e.g. %e, %i or %pi, and their respective values. When a Maxima
session is started, the user sees a child context of global named initial. If he does
not specify any other context, all facts, that means all properties created by declare
and all assumptions created by assume, will be stored in this context. The context
which presently accomodates newly declared assumptions is called the current con-
text. Function facts may be used to list all facts contained in a certain context, or
all facts defined for a particular symbol and kept within the current context.

The user may create child contexts to any existing context, including global. The
facts that are visible and are used for deductions at any moment are those of the
current context plus all of its parent contexts. In addition, the user may activate
any other context freely at will with function activate. This context plus all of its
parent contexts will then also be visible in addition to the current context and its
parents. The user can deactivate any explicitely activated context with deactivate.
A list of all activated contexts is kept in activecontexts.

Function context can be used to show the current context or to change it. New
contexts are defined by either newcontext or supcontext. contexts gives a list of
all contexts presently defined.

The context mechanism makes it possible for the user to bind together and name a
collection of facts. Once this is done, he can activate or deactivate large numbers of
previously defined facts merely by activating or deactivating the respective context.
Facts contained in a context will be retained in storage until destroyed one by one
by calling forget, or as a whole by calling killcontext to destroy the context to which
they belong.

The terms "subcontext" and "sup(er)context" are used in Maxima, but they have
some inherent ambiguity. A child context is always bigger than its parent context
as a collection of facts, because the facts a child context contains are added to the
facts already active in the line of its parent contexts. (It is not possible to deacti-
vate parent contexts to the current context or any other explicitly active context).
The child context therefore is a superset of the parent context. Thus, function sup-
context creates a child context to the current context. Parent contexts are called
subcontexts. This terminology, however, contradicts the normal description of a
tree structure, where one would naturally tend to name a leave a sub-element to
its parent. There is another interpretation contradicting the terminology used in
Maxima. If a context is bigger because it contains more facts, on the other hand
it is smaller, because every additional fact narrows and constrains the possibilities
for the corresponding variable or function to take values. Due to this ambiguity we
stay with the parent-child terminology.

87

Facts and contexts are global in Maxima, even if the corresponding variables are
local. However, it is possible to make facts associated with a local variable local,
too, by declaring (inside of the local environment) the respective local variable or
function a with the system function local(a).

Killing a variable or function  with kill(a) will not delete facts associated with .
Only kill(all) will delete everything, including the defined facts and contexts.

13.1.1.2 Functions and system variables

facts (item) [function]
facts ()

If item is the name of a context, which is either the current context, a parent of it,
a context on the list activecontexts, or a parent of it, facts (item) returns a list of
the facts in the specified context. In the case of all other contexts, it returns an
empty list. If item is not the name of a context, facts (item) returns a list of the
facts known about variable or function item in the current context.

facts () returns a list of the facts in the current context.

context default: initial [system variable and function]

The value of context indicates the current context. Binding context to a symbol
name will change the current context to name. If a context with this name does not
yet exist, it is created as a direct child to global (as done with function newcontext)
and then made to be the current context.

contexts default: [initial, global] [system variable]

This is a list of all contexts which are currently defined.

newcontext (name) [function]

Creates a new context as a direct child to global and makes it the current context.
If name is not specified, a pair of empty parenthses has to remain. In this case,
a new name is created at random by the gensym function. newcontext evaluates
its argument. newcontext returns name (if specified) or the newly created context
name.

supcontext (name, cont) [function]

Creates a new context name as a direct child to cont and makes it the current
context. If context is not specified, the current context will be the parent. If name
is not specified, a pair of empty parenthses has to remain. In this case, a new name
is created at random by the gensym function and the current context is used as
parent. supcontext evaluates its arguments. supcontext returns name (if specified)
or the newly created context name.

activate (contet1, ..., contetn) [function]

Adds the contexts contet1, ..., contetn to the list activecontexts. The facts in
these contexts are then available to make deductions. activate returns done if the

88

contexts exist, otherwise an error message.
Note that by activating a context, the facts of all its parent contexts also become
available for deductions, although these parent contexts are not added to the list
activecontexts.

deactivate (contet1, ..., contetn) [function]

Removes the contexts contet1, ..., contetn from the list activecontexts. The facts
in these contexts are then no longer available to make deductions. deactivate
returns done if the contexts exist (even if any one of them cannot be deactivated),
otherwise an error message.

Note that it is only possible to deactivate contexts that have previously been acti-
vated by activate. Facts within parent contexts of a context removed from the list
activecontexts are also no longer available for deductions, unless these contexts
are the current context or a parent of it, or any other context remaining on the list
activecontexts or any parent of it.

activecontexts [system variable]

This is a list of all contexts explicitely activated with function activate. Note that
this list does not include the (active) parent contexts of an activated context, nor
the current context or any of its parents.

killcontext (contet1, ..., contetn) [function]

Kills the contexts contet1, ..., contetn. killcontext evaluates its arguments. kill-
context returns done. If one of the killed contexts is the current context, its next
available direct parent context will become the new current context. If context ini-
tial is killed, a new, empty initial context is created. If a killed context has childs,
they will be connected to the next available parent of the killed context. killcontext,
however, refuses (by returning a corresponding message) to kill a context which is
on the list activecontexts or to kill context global.

13.1.2 Implementation

13.1.2.1 Internal data structure

13.1.2.2 Notes on the program code

13.2 Values, properties and assumptions

Values, properties and assumptions are independant of one another. They are not
cross-checked.

General statements on values in Lisp and MaximaL.

Predicates sometimes check properties, sometimes values.

Functions on assumptions don’t take actual values into consideration.

etc.

89

13.3 MaximaL Properties

13.3.1 Introduction

In Maxima, variables and user-defined functions can be associated not only with
values, but also with properties. Properties contain information about the kind of
variable or function which the respective symbol is to represent, or the type of value
which the respective variable or function is supposed to take.

The concept of properties is inherent in Lisp. In order to distinguish both types, we
will henceforth use the terms Lisp property to refer to the properties on the Lisp
level, and MaximaL property (sometimes also called: mathematical property) to
refer to the properties on the MaximaL level.

There are three types of MaximaL properties:

� System-declared properties can be declared for a symbol only by the system
(but they can be removed by the user),

� User-declared (sometimes also called: system-defined or predefined) prop-
erties are predefined properties which the user can declare for a symbol or
remove from it,

� User-defined properties can be defined by the user and then be declared for a
symbol or removed from it.

Unlike values, properties (except for the property value) are global in Maxima. Thus,
a property assigned to a local variable inside of a local environment (like a block or
a function) will remain associated with this symbol outside of the block or function
(after it has been called). This holds in particular for function definitions: a function
defined inside of a block will be global (once the block has been evaluated). In order
to prevent properties of a local variable  to become global, the variable has to be
declared local (a) inside of the local environment.

kill (a) not only unbinds the symbol , but also removes all associated properties.

13.3.2 System-declared properties

These are properties declared by Maxima that cannot be declared by the user, e.g.
value, function, macro, or mode_declare. System-declared properties, however,
can be removed by the user.

For instance, value itself is a system-declared property of a symbol, indicating that
it has been bound to a value. If a user defines a function f, the symbol f is declared
the property function by the system. Nevertheless, the user may bind f to a value,
too, and thus is declared the property value by the system in addition. f will now
behave as a variable or as a function, depending on the context. If the user removes
the property function from f, its function declaration will be lost and it will behave
solely as a variable. If the user removes value, too, the symbol f will be unbound
again and have no properties at all.

90

13.3.3 User-declared properties

These are pre-defined properties, which the user can assign to a variable or user-
defined function or remove from it. Properties are recognized by the simplifier
and other Maxima functions. There are general (featurep) and specific (e.g. con-
stantp) predicate functions which can test a certain symbol for having a specific
user-declared or user-defined property or not.

13.3.3.1 Declaration, information, removal

declare (
�

1
�

� [11, . . . , 1k]
�

,
�

p1
�

� [11, . . . , 1]
�

, . . . ,
�

n
�

� [. . .]
�

,
�

pn
�

� [. . .]
�

)
[function]

Assigns property (or list of properties) pj to symbol (or list of symbols) j, j =
1, . . . , n. Symbols may be variables, functions, operators, etc. Arguments are not
evaluated. declare always returns done. To test whether an atom has a specific
(user-declared or user-defined) property, see featurep. For the use of declare to
create user-defined properties, see declare (p, feature).

(%i1) declare(a,outative,b,additive)$
(%i2) declare([r,s,t],real)$
(%i3) declare(c,[constant,complex])$

properties () [function]

Returns a list of all properties associated with symbol a. This includes system prop-
erties and properties having been previously defined by the user.

props [system variable]

The system variable contains a list of all symbols that have been assigned any
user-declared or user-defined property.

propvars (p) [function]

Returns a list of all symbols on the system list props which have property p.

remove (
�

1
�

� [11, . . . , 1k]
�

,
�

p1
�

� [11, . . . , 1]
�

, . . . ,
�

n
�

� [. . .]
�

,
�

pn
�

� [. . .]
�

)
�

�

remove (all,p) [function]

Removes property (or list of properties) pj from symbol (or list of symbols) j, j =
1, . . . , n. remove (all, p) removes property p from all atoms which have it. The
removed properties may be system-declared properties such as function, macro, or
mode_declare. Arguments are not evaluated. remove always returns done.

13.3.3.2 Properties of variables

integer [property]
noninteger [property]

Tells Maxima to recognize j as an integer or noninteger variable. Function askinte-
ger recognize this property, but integerp does not.

91

even [property]
odd [property]

Tells Maxima to recognize j as an even or odd integer variable. The properties even
and odd are recognized by function askinteger, but not by the predicate functions
evenp, oddp, and integerp.

(%i1) declare (n, even) ;
(%o1) done
(%i2) askinteger (n, even) ;
(%o2) yes
(%i3) askinteger (n) ;
(%o3) yes
(%i4) evenp(n) ;
(%o4) false

rational [property]
irrational [property]

Tells Maxima to recognize j as a rational variable or an irrational real variable.

real [property]
complex [property]
imaginary [property]

Tells Maxima to recognize j as a real, complex or pure imaginary variable.

constant [property]

The declaration of j to be constant does not prevent the assignment of a non-
constant value to j. Such an assignment, on the other hand, does not remove the
property constant from j. The following predicate function constantp not only tests
for a variable declared constant, but for a constant expression in general.

constantp (expr) [predicate function]

Returns true, if expr is a constant expression, otherwise false. An expression is
considered a constant expression, if its arguments are numbers (including ratio-
nal numbers as displayed with /R/), symbolic constants such as %pi, %e, or %i,
variables bound to a constant or declared constant by declare, or functions whose
arguments are constant. constantp evaluates its arguments. See the property con-
stant which declares a symbol to be constant.

scalar [property]
nonscalar [property]

Tells Maxima to recognize j as a scalar or nonscalar variable. The usual application
is to declare a variable as a symbolic vector or matrix. Makes j behave as does
a list or matrix with respect to the dot operator. The following predicate functions
scalarp and nonscalarp not only test variables declared scalar or nonscalar.

scalarp (expr) [predicate function]
nonscalarp (expr) [predicate function]

92

scalarp returns true, if expr is a number, a constant, or a variable declared scalar,
or composed entirely of numbers, constants, and such declared variables, but not
containing matrices or lists. nonscalar returns true if expr contains atoms declared
nonscalar, or lists, or matrices.

nonarray [property]

Tells Maxima to consider j not to be an array. This prevents multiple evaluation of
a subscripted variable.

13.3.3.3 Properties of functions

integervalued [property]

Tells Maxima to recognize j as an integer-valued function.

increasing [property]
decreasing [property]

Tells Maxima to recognize j as an increasing or decreasing function.

(%i1) assume(a > b);
(%o1) [a > b]
(%i2) is(f(a) > f(b));
(%o2) unknown
(%i3) declare(f, increasing);
(%o3) done
(%i4) is(f(a) > f(b));
(%o4) true

posfun [property]

Tells Maxima to recognize j as a positive function.

evenfun [property]

A function with this property is recognized as an even function. ƒ (−) will be sim-
plified to ƒ ().

oddfun [property]

A function with this property is recognized as an odd function. ƒ (−) will be simpli-
fied to −ƒ ().

outative [property]

If a function has this property and it is applied to an argument forming a product,
constant factors are pulled out on simplification. Constants in this sense are num-
bers, standard Maxima constants such as %e, %i or %pi, and variables that have
been declared constant.

(%i1) declare(f,outative)$
(%i2) f((r-2+%e^%i)*x);
(%o2) ƒ ((r + e − 2) )

93

(%i3) declare(r,constant)$
(%i4) f((r-2+%e^%i)*x);

(%o4) (r + e − 2) ƒ ()

The standard functions sum, integrate and limit are by default outative. However,
this property can be removed from them by the user.

additive [property]

If a function has this property and it is applied to an argument forming a sum, the
function is distributed over this sum, i.e. f(y+x) will simplify to f(y)+f(x).

linear [property]

Equivalent to declaring j both outative and additive.

multiplicative [property]

If a function has this property and it is applied to an argument forming a product,
the function is distributed over this product, i.e. f(y*x) will simplify to f(y)*f(x).

commutative [property]
symmetric [property]

These two properties are synonyms. If assigned to a function ƒ (, z, y), it will be
simplified to ƒ (, y, z).

antisymmetric [property]

If assigned to a function ƒ (, y, z), it will be simplified to −ƒ (, y, z). That is, it will
give (−1)n times the result given by symmetric or commutative, where n is the
number of interchanges of wo arguments necessary to convert it to that form.

lassociative [property]
rassociative [property]

A function with this property is recognized as being left-associative or right-associa-
tive.

13.3.4 User-defined properties

The user may define new properties and assign them to variables or user-defined
functions with declare in the same way it is done for predefined, user-declared
properties. User-defined properties are kept in the system list features together
with some (but not all) of the predefined, user-declared properties. The predicate
function featurep may be used to test a variable or function for having a user-
defined (or a predefined, user-declared) property or not.

declare (p, ƒetre) [function]

Declares p to be a new property. It can then be assigned to variables or user-
defined functions, tested for, view in lists, or removed. User-written functions can
consider this property.

94

(%i1) declare(new_property, feature)$
(%i2) declare(a, new_property)%
(%i3) properties(a);
(%o3) [database info,kind(a,new_property)]
(%i4) featurep(a,new_property);
(%o4) true
(%i5) a:b;
(%o5) b
(%i6) featurep(a,new_property);
(%o6) false
(%i7) featurep(’a,new_property);
(%o7) true
(%i8) c:new_property;
(%o8) new_property
(%i9) featurep(a,c);
(%o9) true

featurep (a, p) [predicate function]

Tries to determine whether atom a has property p. Note that featurep returns false
also in the case where it cannot determine whether atom a has property p or not.
Only user-declared and user-defined properties can be tested with featurep, but not
system-declared properties.

Note that featurep evaluates both its arguments! Thus, if a has a value that is itself
a variable or function, and if p has a value that is itself a property, then it is the
variable or function which is the value of a that is tested for the property which is
the value of p.

features [system variable]

This list contains some (but not all) of the predefined, user-declared properties plus
all user-defined properties.

13.3.5 Implementation

13.4 Assumptions

13.4.1 User interface

13.4.1.1 Introduction

In Maxima, variables and user-defined functions can be associated with so-called
assumptions. Assumptions limit the range of values these variables or functions
are supposed to take. It is sometimes useful or even necessary to impose such re-
strictions in order to obtain usable results from symbolic computation. Assumptions
can be statements comprising the relational operators "<", "<=", equal, notequal,
">=" und ">" and some combinations of them with the boolean operators AND
and NOT (but not OR). Facts are declared by using function assume. See there for
details on the assumptions that can be made. Assumptions are remove with forget.

95

13.4.1.2 Functions and system variables for assumptions

assume (pred1, pred2, . . . , predn) [function]

Adds predicates pred1, pred2, . . . , predn to the current context. If a predicate is
redundant or inconsistent with the predicates in the current context, it is not added.
assume returns a list whose elements are the predicates added to the context, or
redundant, inconsistent or meaningless where applicable. assume evaluates its
arguments. The context accumulates predicates from each call to assume. assume
does not accept a Maxima list of predicates as does forget.

The predicates defined may only be expressions with the relational operators <,≤
(<=), equal (, b), notequal (, b), ≥ (>=) and >. Predicates cannot be literal
equality (=) or literal inequality (#) expressions, nor can they be predicate functions
such as integerp. assume does not allow predicates with complex numbers, either.

Boolean compound predicates of the form "pred1 AND . . . AND predn" are recog-
nized, but not "pred1 OR . . . OR predn". "NOT predk" is recognized, if predk is a
relational predicate. Expressions of the form "NOT (pred1 AND pred2)" and "NOT
(pred1 OR pred2)" are not recognized.

Maxima’s deduction mechanism is not very strong; there are many obvious conse-
quences which cannot be determined by is. This is a known weakness.

(%i1) assume (x > 0, y < -1, z >= 0);
(%o1) [x > 0, y < - 1, z >= 0]
(%i2) assume (a < b and b < c);
(%o2) [b > a, c > b]
(%i3) assume (2*b < 2*c);
(%o3) redundant
(%i4) assume (c < b);
(%o4) inconsistant
(%i5) facts ();
(%o5) [x > 0, - 1 > y, z >= 0, b > a, c > b]
(%i6) is (x > y);
(%o6) true
(%i7) is (y < -y);
(%o7) true
(%i8) is (sinh (b - a) > 0);
(%o8) true
(%i9) forget (b > a);
(%o9) [b > a]
(%i10) is (sinh (b - a) > 0);
(%o10) unknown
(%i11) is (b^2 < c^2);
(%o11) unknown

forget (pred1, pred2, . . . , predn) [function]
forget (L)

Removes predicates from the current context. Alternatively, the arguments can be
passed to forget as a Maxima list L. forget evaluates its arguments. In a very lim-
ited way, the predicates may be equivalent (not necessarily identical) expressions

96

to those previously assumed (e.g., b*2>4 eliminates b>2, but 2*a<2*b does not
eliminate a<b).

forget does not complain if a predicate to be forgotten does not exist. In any case,
pred1, pred2, . . . , predn or L is returned.

is (expr) [function]

ev(expr, pred), which can be written expr, pred at the interactive prompt, is equiv-
alent to is(expr).

is attempts to determine whether the predicate expr is provable from the facts in
the database. If the predicate is provably true or false, is returns this respectively.
Otherwise, the return value is governed by the global flag prederror. If it is not set
(default), it returns unknown. Otherwise, is returns an error message.

Note that is can evaluate any other predicate, too,independently of the assump-
tions in the database. Special attention has to be paid for tests of equality. is(a=b)
tests a and b to be literally equal, that is identical. is(equal(a,b)) tests for equiva-
lence, which does not necessarily imply literal identity. Different symbolic expres-
sions, that can be simplified by Maxima to the same (canonical) expression, are
considered equivalent.

(%i1) is (%pi > %e);
(%o1) true
(%i2) is(integerp(d));
(%o2) true
(%i3) c: (x - 1) * (x + 1) $
(%i4) d: x^2 - 1 $
(%i5) is(c = d);
(%o5) false
(%i6) is(equal(c,d));
(%o6) true

is attempts to derive predicates from the facts database. Note that assumptions
cannot be tested for literal equality or inequality.

(%i1) assume (a > b, b > c);
(%o1) [a > b, b > c]
(%i2) is (a + b > b + c);
(%o2) true
(%i3) is (equal (a, c));
(%o3) false
(%i4) is (2*a > 3*c);
(%o4) unknown
(%i5) assume (equal(d,5));
(%o5) [equal(d,5)]
(%i6) is (equal (d, 5));
(%o6) true
(%i7) is (d=5);
(%o7) false

If is can neither prove nor disprove a predicate by itself of from the facts database,
the global flag prederror governs the behavior of is.

97

(%i1) assume (a > b);
(%i1) [a > b]
(%i2) prederror: true$
(%i3) is (a > 0);
Maxima was unable to evaluate the predicate: a > 0
-- an error. Quitting. To debug this try debugmode(true);
(%i4) prederror: false$
(%i5) is (a > 0);
(%i1) unknown

13.4.2 Implementation

98

Chapter 14

Patterns and rules

14.1 Introduction

This chapter describes pattern matching and user-defined simplification rules. Max-
ima’s pattern matcher was written by Richard J. Fateman. His dissertation from
1971, entitled Algebraic Simplification, describes it together with other components [FatemThe72,

pp. 23–81]of Macsyma which he had implemented. We recommend reading chapter 2, "The
User-Level Semantic Matching Capability In MACSYMA", of this thesis, because it
motivates why we want to use pattern matching in a CAS, and on what theoretical
background Maxima’s pattern matcher was designed. Repeatedly, when related
question arose on maxima-discuss in the past, Richard took the time to explain the
principles of Maxima’s pattern matcher. So the archives of maxima-discuss consti-
tute another valuable source of information in this respect.

The very concise chapter on rules and patterns of the Maxima manual was written
by Robert Dodier. Michel Talon recently contributed an introductory tutorial which [TalonRP19]

focuses on special issues and potential problems in application and includes refer-
ences to how the pattern matcher works on the Lisp level.

There are two groups of functions which implement different pattern matching
schemes. The first group comprises defmatch, defrule, tellsimp, tellsimpafter,
apply1, applyb1, and apply2. To the second group belong let and letsimp. Both
schemes define patterns in terms of pattern variables declared by matchdeclare.
Pattern-matching rules defined by tellsimp and tellsimpafter are applied automati-
cally by the Maxima simplifier, while rules defined by defmatch, defrule, and let are
applied by an explicit function call.

There are additional mechanisms for rules applied to polynomials by tellrat, and for
commutative and noncommutative algebra in the affine package.

14.1.1 What pattern matching is and how it works in Maxima

Pattern matching means taking an arbitrary expression as input and comparing it
(as a whole or in parts) with a pattern previously defined. Some pattern matching
functions (e.g. defmatch) just inform the user about whether a given expression
or subexpression matches the pattern or not, and in case of a positive match, how
the pattern variables used to define the pattern are matched by parts of the given
expression. Other pattern matching functions (e.g. defrule, tellsimp, tellsimpafter)

99

will, in case of a positive match, also replace the matching expression or subex-
pression with some replacement expression, that is, they will modify the original
expression.

In combination with functions which can decompose a given expression into all of
its subexpressions (apply1, applyb1, apply2), pattern matching functions can com-
pare a defined pattern with all subexpressions on all levels of a given expression.
The replacement can then be done to all subexpressions which match the pattern.
This constitutes a very powerful mechanism which allows to modify or simplify the
given expression according to certain rules. Such rules are nothing more than a
combination of a pattern and a corresponding replacement.

Pattern matching is done in several steps. First we have to define a pattern. This
is done with the help of pattern variables. So actually, defining the pattern vari-
ables is the very first step. This is done with matchdeclare. The definition of the
actual pattern is done in the next step, when we create a function which can test a
given expression for whether it matches the pattern (and how) or not. Creating this
function and defining the pattern is done with defmatch. defmatch not only uses
pattern variables, but also pattern parameters to define the pattern. Alternatively,
we can define a function which substitutes an expression matching the pattern with
a replacement expression. This is done with defrule. Thus, defrule not only defines
a pattern, but a complete rule consisting of a pattern and the corresponding re-
placement to be carried out in case of a positive match.

Both defmatch and defrule create a match function which can be called explicitely
by the user. Calling this function with an actual expression (an expression to be
tested for whether it matches the pattern or not) as an argument forms the third
step in pattern matching. If we want to apply our match function to all subexpres-
sions of the actual expression, we have to wrap it in apply1, applyb1, or apply2
before calling it. However, it is also possible to make the simplifier use our newly
defined rule automatically for any expression (and any of its subexpressions) which
is being simplified by the system. Depending on whether our new rule is to be used
before or after the system simplification rules, its definition is done with tellsimp or
tellsimpafter.

14.1.1.1 Pattern, pattern variable, pattern parameter, match

A pattern is a kind of template expression comprising both fixed elements, which
have to match exactly with the corresponding parts of an actual expression (al-
though, if they are symbols introduced by the user, they might be evaluated), and
variable elements, which can be pattern variables, each having a specific variabil-
ity determined by a condition associated with it, the so-called match predicate, or
pattern parameters. An atom or subexpression of the actual expression matches a
pattern variable, if it satisfies its respective match predicate. It matches a pattern
parameter, if it is identical with the corresponding pattern argument.

Pattern variables, also called match variables, are the most important element used
for the definition of patterns. Each pattern variable is associated with a condition
which allows to determine whether a subexpression (an atom is also a subexpres-
sion) of the actual expression is able to match this variable or not. This condition is

100

defined in the form of a predicate, a Boolean function returning either true or false.
More than one pattern variable can occur in a pattern, and a pattern variable can
occor more than once.

A pattern is an expression in which pattern variables occur together with pattern
parameters, other symbols introduced by the user, numbers, operators, or function
calls. If a pattern is to match an actual expression, all pattern variables occuring in
the pattern and all of their occurrences have to match a subexpression of the actual
expression; all pattern parameters, if any, have to match a symbol identical with
the pattern argument; and all other elements of the pattern have to literally match
a counterpart of the actual expression (with the exception of a possible evaluation
of any symbol introduced by the user). Only if all of this is fulfilled and nothing
of the actual expression is left over, the pattern matches as a whole. In this case,
every pattern variable will be bound (i.e. assigned as its value) to the corresponding
subexpression of the actual expression.

14.1.1.2 No backtracking

Maxima’s pattern matcher works without backtracking. This seemingly harmless
little statement has to be considered with the utmost care in order to be able to
successfully use pattern matching with Maxima.

To put it another way, Maxima’s pattern matcher does not work according to the
principle of trial and error. It does not try one way, and if it doesn’t get to the end,
try another way, and so on. If, during an attempted match, it does not succeed
with matching a particular pattern variable, it won’t go back and try it again under
different considerations, by shuffling around matching variables and potential cor-
responding subexpressions of the actual expression. This means, Maxima’s pattern
matcher has a certain strategy and order in which to proceed with trying to match
each element of the pattern, one after the other, each pattern variable and each of
its possibly multiple occurrences, and the other elements of the pattern, and if this
fails for any element of the pattern, this was it. So the user has to have some pre-
cise knowledge about this strategy and order when he wants to set up his pattern
in a way so that it matches exactly with what it is supposed to match, nothing more
and nothing less.

There are other CAS systems whose pattern matcher in fact do work according to
the principle of backtracking. Such a pattern matcher runs through a large number
of potential combinations of partial matches, trying again and again to achieve the
global match. So it might preliminarily assign a subexpression to the first pattern
variable, and then see whether the second pattern variable finds something ade-
quate from what is left of the actual expression. If not, it will undo the assignment
to the first pattern variable and try it with a different subexpression, hoping that
under this new condition the second pattern variable will also find what it needs,
and so on. While such a pattern matching scheme is probably easier for the user
to handle, it can lead to exponential time cost. Maxima’s pattern matcher, on the
contrary, was designed to be efficient. But successfully working with it is much
more challenging for the user. Nevertheless, we will show how it can be elegantly
employed in solving problems.

101

14.1.1.3 The matching strategy in detail

Maxima’s pattern matcher is more than just a literal matcher. It considers algebraic
properties of expressions, for instance the commutativity of addition and multipli-
cation.

The usual strategy of the matcher is to compare a given pattern variable, according
to its match predicate, with all subexpressions of the actual expression, one after
the other. The first subexpression it finds which satisfies the match predicate, it will
take. Then the matcher goes to the next pattern variable and repeats the process
with what is left from the actual expression. If at any point a pattern variable cannot
find a matching counterpart, the global match fails. This implies that the order in
which the pattern variables are compared against the subexpressions is important.
Pattern variables are tested against subexpressions in the inverse order in which
they appear in the pattern. If a subexpression of the actual expression satisfies the
match predicate of more than one pattern variable, it will be assigned to the first
pattern variable which finds it. If a pattern variable occurs more than once in a
pattern, then of course what it takes must be identical for all occurrences (this is an
extra condition in addition to the match predicate).

14.1.1.3.1 Peculiarities of addition and multiplication

Addition and multiplication are treated differently from other operands. In case of
the subexpression actually under consideration being a sum or a product, a pattern
variable may not only take one term or factor which fits, but it may take multiple
terms or factors fitting. In fact, if all terms or all factors agree with its match pred-
icate, a pattern variable will take the whole sum or product. This means, from a
sum or a product a match variable will always take as much as it can, it is said to
be greedy with respect to addition and multiplication.

This immediately leads to another important point. A pattern variable is also al-
lowed to take "0" in case of a sum, or "1" in case of a product, if "0" resp. "1"
agree with its specific match predicate. Together with what we said in the previous
paragraph, this means:

If, for example, we have ∗ b being part of a pattern, with pattern variables a and
b, and this part of the pattern is compared with a subexpression ∗ y of the actual
expression, x and y being symbols, it does not necessarily mean that a will take x
and b will take y, or vice versa. If both x and y fulfill the match predicates of both
a and b, the first pattern variable to be compared against this subexpression, say
it is b, will take  ∗ y and the second one, say it is a, will be left with "1". If the
user wants a to take x and b to take y, he has to specify the corresponding match
predicates in a way that x matches a, but not b, and y to match b, but not a. Only
with such a specification he will be on the save side that the matcher will do what
he wants. We see here already that match predicates always should be as specific
as possible. An intended match will most probably not work correctly, if all match
predicates are true or all (see matchdeclare).

14.1.1.3.2 The anchor principle

102

If a (part of a) pattern of the form ∗b+c∗d with pattern variables , b, c, d, that is a
sum of subexpression being products, is to be compared with a subexpression ∗y+
∗ of the actual expression, , y, , possibly themselves being subexpressions,
and we expect say  to match with , we will most likely not be able to set up a
correct matching scheme unless we employ the anchor principle.

In the above pattern, Maxima’s pattern matcher can correctly determine whether
 matches  only, if b and y are identical, or if at least the matcher can determine
what y is, possibly with the help of some pattern parameter. The matcher needs to
have an anchor for being able to match  with , and this anchor is y. In fact, what
the matcher simply does in this case, is to use ratcoeff(x*y+u*w,y). This way it can
determine the coefficient of y, which is x. x might well be a complicated expression
consisting of multiple factors. But if the matcher does not know what y is, if y is
unknown in the same way that x is unknown, it cannot apply ratcoeff, because it
does not know what coefficient (the coefficient of what) to look for. In this case
most likely the matcher (e.g. function defmatch) will issue a warning, saying that it
cannot safely match the pattern specified by the user under the given conditions,
i.e. the specifiactions of the pattern variables it contains.

We will give an example of the anchor principle in sect. 14.3.1, when we discuss
defmatch and defrule.

14.2 Matchdeclare

matchdeclare (
�

r1
�

� [r11 , . . . , r1k1]
�

, pred1, ..., rn, predn) [function]

The arguments of matchdeclare are pairs  = 1, . . . , n consisting of a pattern vari-
able r or a list [r1 , . . . , rk] of pattern variables, and a match predicate
pred. matchdeclare associates r or the corresponding list of pattern variables
 with pred. See the introduction for the meaning of pattern variable and match
predicate.

The functions defmatch, defrule, tellsimp, tellsimpafter, and let use pattern vari-
ables to construct patterns.

A match predicate is an unfinished function call or lambda call, in the sense that it
lacks its last argument, or has no argument at all, if the function or lambda expres-
sion requires only one. In the first case, the list of arguments given in parentheses
to the function call or lambda call lacks the last element. In the latter case, only
the name of the function or only the lambda expression itself is given, with no ar-
gument (and no empty parentheses). A match predicate, however, can also be true
or all. Here are some examples of valid match predicates.

(%i1) matchdeclare (a, integerp)$
(%i2) matchdeclare (b, lambda ([x], x > 0))$
(%i3) matchdeclare (c, freeof (%e, %pi, %i))$
(%i4) matchdeclare (d, lambda ([x, y], gcd (x, y) = 1) (1728))$
(%i5) matchdeclare (e, true)$
(%i6) matchdeclare (f, all)$

103

The missing argument will be supplied later, when the match predicate is evalu-
ated. This will not be done before the match function, which will be defined by
e.g. defmatch or defrule, is called to test an actual expression against the defined
pattern containing the pattern variables we have just defined.

When a pattern containing a pattern variable is tested against an actual expres-
sion, the matcher will compare subexpressions of the actual expression with the
predicate of the pattern variable, in order to find out whether this subexpression
matches the pattern variable or not. If the predicate returns anything other than
false, this particular subexpression is said to match the pattern variable and will be
assigned to it as its value. If a replacement expression (e.g. in defrule) contains
this pattern variable, it will be evaluated to this subexpression bound to it. See the
introduction for how multiple pattern variables are matched and at what point the
pattern matches as a whole.

When a pattern containing a pattern variable is tested against an actual expression,
the subexpression to be tested against the particular pattern variable is appended
to the list of arguments of the function call or lambda call of its match predicate,
or, if it has no arguments yet, it is supplied as its sole argument. In any case, the
tested subexpression completes the required number of arguments of the match
predicate.

At this point it should be clear that a match predicate cannot simply be a relational
or Boolean expression. Instead, it has to be wrapped in a function or lambda ex-
pression waiting for the particular subexpression to be its (last) argument. It is not
necessary to call is to evaluate relational expressions within the match predicate.
This will be done automatically when the match is attempted.

Any subexpression matches a match predicates which is defined as true or all. If
the match predicate is a function, it need not be defined yet when matchdeclare is
called, since the predicate is not evaluated until a match is attempted. matchde-
clare quotes its arguments and always returns done.

If an subexpression satisfies a match predicate, the match variable is assigned this
subexpression and nothing more. However, addition and multiplication are treated
differently; other nary operators (both built-in and user-defined) are treated like or-
dinary functions. In the case of addition and multiplication, the match variable may
be assigned a single expression which satisfies the match predicate, or a sum or
product (respectively) of such expressions. Such multiple-term matching is greedy,
which means: predicates are evaluated in the order in which their associated vari-
ables appear in the pattern, and a term which satisfies more than one predicate
is taken by the first predicate which it satisfies. A pattern variable’s predicate is
tested against all operands of the sum or product before the next pattern variable’s
predicate is evaluated. Furthermore, if "0" or "1" (respectively) satisfy a match
predicate and there are no other terms which satisfy the predicate, "o" or "1" is
assigned to the match variable associated with the predicate.

The algorithm for processing addition and multiplication patterns makes some match
results (for example, a pattern in which a "match anything" variable appears) de-
pendent on the ordering of terms in the match pattern and in the expression to be

104

matched. However, if all match predicates are mutually exclusive, the match result
is insensitive to ordering, as one match predicate cannot accept terms matched by
another. See the introduction for more explications.

Calling matchdeclare with a variable var as an argument changes the matchdeclare
property of var, if one was already declared; only the most recent matchdeclare is
in effect when a rule for var is defined. Later changes to the matchdeclare property
of var (via matchdeclare or remove) do not affect already existing rules.

propvars (matchdeclare) returns the list of all variables for which there is a matchde-
clare property. printprops (var, matchdeclare) returns the predicate for variable var.
printprops (all, matchdeclare) returns the list of predicates for all match variables.
remove (var, matchdeclare) removes the matchdeclare property from var.

14.3 Defmatch and defrule

defmatch (matchfunc, pattern

, 1, . . . , n
�

) [function]

Defines a match function named matchfunc(epr, 1, ..., n) which tests expr to see
if it matches pattern while providing arguments 1, . . . , n for the respective pattern
parameters defined in defmatch. pattern is an expression containing the pattern
parameters 1, . . . , n (if any) and also pattern variables (if any), having been de-
clared with matchdeclare. Any other symbol neither declared as a pattern variable
in matchdeclare nor as a pattern parameter in defmatch only matches itself. How-
ever, it it is a symbol introduced by the user, it will be evaluated at the time the
match is attempted.

The first argument to the created function matchfunc is an expression to be matched
against the pattern. The other arguments of matchfunc are assigned to the pattern
parameters of defmatch, which occur in pattern. Maxima evaluates and simplifies
the argument of matchfunc.

If matchfunc is applied to an expression expr and the match is successful, match-
func returns a list of equations whose left hand sides are the pattern parameters
and pattern variables, and whose right hand sides are the subexpressions of expr
which matched the pattern parameters and pattern variables. The pattern vari-
ables, but not the pattern parameters, are assigned the subexpressions they match.
If the match fails, matchfunc returns false. A match function with a literal pattern
(that is, a pattern which contains neither pattern parameters nor pattern variables)
returns true if the match succeeds.

defmatch returns its first argument, which is the name of the newly defined match
function.

In the following example we define a match function linearp(expr) which tests expr
to see if it is of the form a*x + b, such that a and b do not contain x, and a is
nonzero. Thus, this function matches expressions linear in x.

(%i1) matchdeclare (a, lambda ([k], k#0 and freeof(x, k)), b, freeof(x))$
(%i2) defmatch (linearp, a*x + b)$
(%i3) linearp (3*x + (y + 1)*x + y^2);

105

(%o3) [b = y2,  = y + 4]
(%i4) linearp (3*z + (y + 1)*z + y^2);
(%o4) false

The first expression 3+ (y+1)+ y2 = (y+4)+ y2 is linear in x. The second one is
linear in z, but not in x, so the match does not succeed. Note that k#0 means k 6= 0,
and that freeof is a function requiring two arguments; see matchdeclare for how
the last and missing parameter is appended to a function call being a predicate. If
we want to see whether an expression is linear in any variable, we have to introduce
a pattern parameter in defmatch.

(%i5) defmatch (linearp, a*x + b, x)$
(%i6) linearp (3*z + (y + 1)*z + y^2, z);
(%o6) [b = y2,  = y + 4,  = z]
(%i7) a; b; x;
(%o7) y+4
(%o8) y2

(%o9) x

Note that both defmatch and linearp now have two arguments. We specifically ask
linearp for linearity in z. This is the case. The global pattern variables a and b
have been assigned the matching subexpressions, while the pattern parameter x
has not.

defrule (repfunc, pattern, replacement) [function]

Defines a replacement function repfunc(expr) which returns replacement, if expr
matches pattern. Otherwise, if the match fails, repfunc(expr) returns false.

While a match function defined by defmatch only determines whether a given ex-
pression matches a pattern or not, and returns the values which have been as-
signed to the pattern variables, a replacement function, also called a replacement
rule, rule function or simply a rule, determines whether the expression matches
pattern, and in case of a match constructs the replacement with the actual values
of the pattern variables. When all pattern variables occuring in the replacement
have been assigned their actual values, the resulting expression is simplified.

defrule does not, in addition to pattern variables, support pattern parameters, as
does defmatch.

If repfunc is applied to an expression by apply1, applyb1, or apply2, every subex-
pression matching the pattern will be replaced by replacement.

defrule returns the names of its parameters in the following form:
repfunc: pattern -> replacement.

14.3.1 Example: Rewriting an oscillation function

In sect. 24.2.1.1.1 and 24.2.1.2.2 we solved a linear second order ODE representing
a free harmonic oscillator without damp, Satz 5.10. The result of the IVP was the
time function in the general form

φ(t) = C1 sin(ωt) + C2 cos(ωt) (14.1)

106

with the angular frequency ω depending on the particular ODE and the constants
C1, C2 depending on the initial conditions. Note that the arguments of the sin and
the cos are identical. Any expression like this, representing the superposition of two
oscillations with the same frequency, but with different amplitudes and a phase shift
between them, can be brought into the form of a single oscillation

φ = A sin(ωt + α), (14.2)

with the amplitude A and the phase constant α. The formulas are

A =
r

C21 + C
2
2 and α = tn2(C1, C2). (14.3)

Thus, we need the constants C1, C2 in order to compute this representation. How
can we isolate these factors from the solution of the IVP as returned by ic2, if we
take (%o5) from sect. 24.2.1.2.2 as an example? Of course, for a specific exam-
ple, we can extract them manually. But suppose we want to perform this in an
automated way, for instance as part of a bigger program dealing with a large num-
ber of such equations and IVPs. We can do this with Maxima’s pattern matching.
In demonstrating how, we will deliberately start with what is a rather intuitive ap-
proach, but turning out not to work properly.

(%i1) matchdeclare([a,b,c],all)$
(%i2) defmatch(m1,a*sin(c)+b*cos(c));
defmatch: a*sin(c) will be matched uniquely since sub-parts would otherwise

be ambigious.
defmatch: cos(c)*b will be matched uniquely since sub-parts would otherwise

be ambigious.
(%o2) m1
(%i3) m1(sin(sqrt(g/l)*t)*sin(x)*cos(y)*s+cos(sqrt(g/l)*t)*cos(x));

(%o3) [b = cos

�√

√g


t

�

,  = s sin

�√

√g


t

�

cos (y), c = ]

We got warnings from defmatch, which we ignored, because we did not understand
them yet. We chose to test our match function m1 with an expression, which con-
tains other sines and cosines as part of the factors we want to extract. But m1
messed it up: instead of selecting the sin and cos with the argument

p

g/  t as the
anchors, m1 took the sin and cos whose arguments are x. We want to improve our
match predicates, knowing that our anchors must both contain in their arguments
the factor t, and that no other sin or cos occuring in the expression can contain t.

(%i1) matchdeclare([a,b],all,c,lambda([i],not(freeof(t,i))))$
(%i2) defmatch(m1,a*sin(c)+b*cos(c));
defmatch: a*sin(c) will be matched uniquely since sub-parts would otherwise

be ambigious.
defmatch: cos(c)*b will be matched uniquely since sub-parts would otherwise

be ambigious.
(%o2) m1
(%i2) m1(sin(sqrt(g/l)*t)*cos(x)*s+cos(sqrt(g/l)*t)*sin(x));

(%o2) [b = sin (),  = s cos (), c =

√

√g


t]

107

(%i3) m1(sin(sqrt(g/l)*t)*sin(x)*cos(y)*s+cos(sqrt(g/l)*t)*cos(x));
(%o2) false

The warnings are still there. But the first try of m1 with a slightly less complicated
expression than before looks promising: m1 has computed the factors properly.
However, the second try fails: m1 does not find any match with the expression
from above.

What went wrong? We have to read the introduction carefully again, in particular
the section about the anchor principle. Then we realize, that what we are trying to
do cannot succeed. It is impossible to match all three pattern variables in this one
step, because for a and b we have no unambiguous anchor available: sin(c) and
cos(c) cannot be identified in the actual expression by the matcher, because c also
is unknown. And vice versa: the matcher cannot identify the anchor for finding c
either, because a and b are unknown. In this situation the result from the matcher is
unpredictable: it might by coincidence return a correct match in one situation, and
it may just as well return an incorrect match in another one, but most likely it will
not find any match, returning false. We just shouldn’t have ignored the warnings.

So we have to start all over again and use an approach in two steps. First we
need to find the anchor, and then with its help we determine the factors. We give
the first step an intuitive try with a little function called anchor, which makes use of
function gatherargs of the opsubst package. We collect and test all arguments from
sin function calls appearing in the expression. If we do not find any one containing
t, we do the same with the cos function calls. anchor will return the complete
argument to what will be our sin and cos anchor, or 0 in case we did not find any,
meaning that our oszillation function is the zero function.

(%i1) load("opsubst")$
(%i2) anchor(expr):=block([erg,g:0], local(expr,erg,g),

erg: gatherargs(expr,sin),
for i:1 thru length(erg) do
if not(freeof(t,erg[i][1])) then g:erg[i][1],

if g=0 then (
erg: gatherargs(expr,cos),
for i:1 thru length(erg) do
if not(freeof(t,erg[i][1])) then g:erg[i][1]

),
g

)$

With the value returned from anchor we now go into the second step. Instead
of declaring the argument of sin and cos as a match variable, we make it a match
parameter. This way, defmatch issues no warning any more, and our match function
properly isolates the factors a and b, even for complicated expressions.

(%i3) matchdeclare([a,b],all)$
(%i4) defmatch(m1,a*sin(anc)+b*cos(anc),anc);
(%o4) m1
(%i5) expr:sqrt(l/g)*sin(sqrt(g/l)*t)+cos(sqrt(g/l)*t);

108

(%o5)

√

√

√



g
sin

�√

√g


t

�

+ cos

�√

√g


t

�

(%i6) an:anchor(%);

(%o6)

√

√g


t

(%i7) if an#0 then m1(expr,an) else (a:b:0,[’a=0,’b=0]);

(%o7) [b = 1,  =

√

√

√



g
, nc =

√

√g


t]

Although we have solved the problem, we are not quite happy yet with the solution
of step 1. There is a vage feeling that our Pascal-like loops are not the most elegant
way of doing things in the Lisp world. Fortunately, Robert Dodier shows us how we
can program it in a Lisp-like fashion employing pattern matching once more, this
time with defrule.

(%i1) matchdeclare(a,lambda([i],i=t),f,lambda([i],freeof(t,i)))$
(%i2) defrule(r1,sin(a*f),(anc:a*f,sin(a*f)))$
(%i3) defrule(r2,cos(a*f),(anc:a*f,cos(a*f)))$
(%i4) anchor(expr):= block([anc:0],local(a,c,expr))),

apply1(expr,r1,r2),
anc

)$
(%i5) expr:sqrt(l/g)*sin(sqrt(g/l)*t)+cos(sqrt(g/l)*t);

(%o5)

√

√

√



g
sin

�√

√g


t

�

+ cos

�√

√g


t

�

(%i6) an:anchor(%);

(%o6)

√

√g


t

We do not really change anything when applying the rules r1, r2 to every subex-
pression of expr with apply1. We simply use a side-effect to make an assignment
to anc when we have found the right subexpression. It does not matter, which one
of the two rules does the assignment, it will be the first one (or the only one) find-
ing the argument containing t. If expr contains both terms, the second rule, when
having found the argument containing t, too, will overwrite anc; but this does not
matter, since the arguments are always identical for both sin and cos. Note, that in
the way we do the assignment ot anc we use dynamic scoping, not lexical scoping.

14.4 Tellsimp and tellsimpafter

tellsimp (pattern, replacement) [function]
tellsimpafter (pattern, replacement) [function]

tellsimp establishes a user-defined simplification rule that will automatically be ap-
plied by the simplifier to any expression before applying the built-in simplification
rules. tellsimpafter establishes a user-defined simplification rule that will automati-
cally be applied by the simplifier to any expression after having applied the built-in
simplification rules.

109

pattern is an expression comprising pattern variables, declared by matchdeclare,
as well as other atoms and operators, considered literals for the purpose of pat-
tern matching. replacement is substituted for an actual expression which matches
pattern. Pattern variables in replacement are assigned the values matched in the
actual expression.

pattern may be any nonatomic expression in which the main operator is not a pat-
tern variable nor "+" nor "*". The newly defined simplification rule is associated
with pattern’s main operator, as it is done for the built-in simplification rules.

tellsimp/tellsimpafter does not evaluate its arguments, and it returns the list of all
simplification rules for the main operator of pattern, including the newly established
rule. Thus, this function can also be used to see what are the built-in simplification
rules for a given main operator.

The names of functions (with one exception, described below), lists, and arrays may
appear in pattern as the main operator only as literals, but not pattern variables.
This excludes expressions like a(x) or b[y] as patterns, if a and b are pattern vari-
ables. Names of functions, lists, and arrays which are pattern variables may appear
as operators other than the main operator in pattern. There is one exception to
the above rule concerning names of functions. The name of a subscripted function
in an expression such as a[x](y) may be a pattern variable, because the main op-
erator is not a, but rather the Lisp atom mqapply. This is a consequence of the
representation of expressions involving subscripted functions.

The rule constructed by tellsimp/tellsimpafter is named after pattern’s main opera-
tor. Rules for built-in operators and user-defined operators defined by infix, prefix,
postfix, matchfix and nofix have names which are Lisp identifiers. Rules for other
functions have names which are MaximaL identifiers.

Rules defined with tellsimp/tellsimpafter are applied after evaluation of an expres-
sion (if not suppressed through quotation or the flag noeval). They are applied
in the order they were defined, and before/after any built-in rules. Rules are ap-
plied bottom-up, that is, applied first to subexpressions before applied to the whole
expression. It may be necessary to repeatedly simplify a result, e.g. via the quote-
quote operator ’ ’ or the flag infeval, to ensure that all rules are applied.

Pattern variables are treated as local variables in simplification rules. Once a rule is
defined, the value of a pattern variable does not affect the rule, and is not affected
by the rule. An assignment to a pattern variable which results from a successful
rule match does not affect the current assignment (or lack of it) of the pattern
variable. However, as with all atoms in Maxima, the properties of pattern variables
(as declared by put and related functions) are global.

The treatment of noun and verb forms is slightly confused. If a rule is defined for
a noun (or verb) form and a rule for the corresponding verb (or noun) form already
exists, the newly-defined rule applies to both forms (noun and verb). If a rule for
the corresponding verb (or noun) form does not exist, the newly-defined rule applies
only to the noun (or verb) form.

The rule constructed by tellsimpafter is an ordinary Lisp function. If the name of
the rule is $foorule1, the construct : sp(trce $ƒoore1) traces the function, and

110

: sp(symbo − ƒncton ′$ƒoore1) displays its definition.

remrule (op, rulename
�

� all) [function]

Removes rules defined by tellsimp or tellsimpafter. remrule (op, rulename) removes
the rule rulename from the operator op. When op is a built-in or user-defined oper-
ator (as defined by infix, prefix, etc.), op and rulename must be enclosed in double
quotes. remrule (op, all) removes all rules from the operator op.

14.5 Apply1, applyb1, apply2

apply1 (expr, re1, . . . , ren) [function]

Repeatedly applies re1 to expr until it fails, then repeatedly applies the same
rule to all subexpressions of expr, left to right, until re1 has failed on all subex-
pressions. Call the result of transforming expr in this manner epr2. Then re2 is
applied in the same fashion starting at the top of epr2. When rule n fails on the
final subexpression, the result is returned.

applyb1 (expr, re1, . . . , ren) [function]

This function is similar to apply1 but works from the bottom up instead of from
the top down. applyb1 repeatedly applies re1 to the deepest subexpression of
expr until it fails, then repeatedly applies the same rule one level higher (i.e., larger
subexpressions), until re1 has failed on the top-level expression. Then re2 is
applied in the same fashion to the result of re1. After ren has been applied to
the top-level expression, the result is returned.

apply2 (expr, re1, . . . , ren) [function]

If re1 fails on a given subexpression, then re2 is repeatedly applied, etc. Only if
all rules fail on a given subexpression is the whole set of rules repeatedly applied to
the next subexpression. If one of the rules succeeds, then the same subexpression
is reprocessed, starting with re1.

14.5.1 Example: substituting in an expression

The following example presents an alternative to subst, the substitution of a pattern
whereever it occurs in an expression, which works strictly on the basis of the GIR
representation of the expression. We will see that it is more powerful than using
subst.

We want to substitute sqrt(), which is 1/2, by b in expressions containing subex-
pressions of type sqrt()n, which is n/2, where n is an integer. This cannot easily
be accomplished with subst, because the UVR of this subexpression depends on
whether we have a simple square root, being represented as such, or a power of a
square root, being represented in exponential notation. In GIR, however, the rep-
resentation is always exponential, and therefore the substitution can be done in a
uniform way. Only for the subexpression being x we need an additional, particular
rule, because x is not represented in exponential form internally, but simply as x.

111

(%i1) halfintegerp(r):=is(integerp(2*r))$
(%i2) matchdeclare(half,halfintegerp)$
(%i3) defrule(r1,x^half,b^(2*half))$
(%i4) defrule(r2,x,b^2)$
(%i5) apply1(sqrt(x)^3+x+sqrt(x)+1/sqrt(x)+1/x+x^(-3/2),r1,r2);

(%o5) b3 + b2 + b +
1

b
+
1

b2
+
1

b3

See, however, that the above example could have easily been done with ratsubst,
too.

14.6 Rules, disprule, printprops, propvars

rules [system variable]

The system variable rules is the list of all match and replacement functions or rules
defined by defmatch, defrule, tellsimp, and tellsimpafter. This list can be displayed
by disprule(all).

disprule (ƒnc1, . . . , ƒncn
�

� ) [function]

Displays the match and replacement functions or rules with the names ƒnc1, . . . , ƒncn
as declared by defmatch, defrule, tellsimp, or tellsimpafter. Each function is dis-
played with an intermediate expression label (%t<n>). disprule (all) displays all
rules and patterns as contained in the system variable rules. disprule quotes its
arguments and returns the list of intermediate expression labels corresponding to
the displayed functions.

14.7 Killing and removing rules

remrule (op, rulename
�

� all) [function]

Removes rules defined by tellsimp or tellsimpafter. remrule (op, rulename) removes
the rule rulename from the operator op. When op is a built-in or user-defined oper-
ator (as defined by infix, prefix, etc.), op and rulename must be enclosed in double
quotes. remrule (op, all) removes all rules from the operator op.

kill (rules) [function]

Removes all rules.

clear_rules() [function]

Calls kill (rules) and then resets the next rule number to 1 for addition +, multipli-
cation *, and exponentiation ^.

112

Part IV

Basic Mathematical
Computation

113

Chapter 15

Basic mathematical functions

15.1 Algebraic functions

15.1.1 Division with remainder, modulo

mod (a, b) [function]

Returns the remainder r of the division of integers a, b. This division is not defined [MaxiManE17]

in the same way as Satz M-5.17 for negative arguments, because it can return a
negative remainder. mod can also be used for non-integers.

divide, when used for division with remainder of integers, does’t either deliver the
results defined in Satz M-5.17 when a or b or both are negative, nor does it deliver
the same result for the remainder as mod.

15.2 Combinatorial functions

15.2.1 Factorials

15.2.1.1 Functions and operators

factorial(expr) [function]
expr ! [operator]

Represents the factorial function. Maxima treats x! the same as factorial(x).

For a complex number x, except for negative integers, x! is defined as ( + 1),
where  is the gamma function.

For an integer x, x! simplifies to the product of the integers from 1 to x inclusive.
0! simplifies to 1. For a real or complex number x in float or bigfloat precision, x!
simplifies to the value of ( + 1). For x equal to n/2 where n is an odd integer, x!
simplifies to a rational factor times

p
π, since (12) is equal to

p
π.

The factorial of an integer is simplified to an exact number unless the operand is
greater than factlim. The factorial for real and complex numbers is evaluated in
float or bigfloat precision.

double_factorial(expr) [function]
expr !! [operator]

114

Represents the double factorial function, generally defined for an argument z as

�

2

π

�

1
4 (1−cos(zπ))

2
z
2
� z

2
+ 1

�

.

double_factorial computes the double factorial, if its argument is a non-negative or
an odd negative integer, a float, a bigfloat, or a complex float. The double factorial
is not defined for even negative integers. For rationals, double_factorial returns a
noun form. Maxima knows the derivative of the double factorial.

The operator x!! is only defined for non-negative integers. For an even (or odd)
non-negative integer n, the double factorial evaluates to the product of all the con-
secutive even (or odd) integers from 2 (or 1) through n inclusive. 0!! simplifies to
1. For all other arguments, !! returns a noun form in terms of function genfact or
an error.

(%i1) double_factorial(x);
(%o1) double_factorial(x)
(%i1) diff(double_factorial(x),x,1);

(%o1)

doble_fctoril()
�

π log
�

2
π

�

sin (π)
2 + Ψ0

�
2 + 1

�

+ log (2)
�

2

genfact(x,y,z) [function]

Returns the generalized factorial, defined as ( − z)( − 2z)...( − (y − 1)z). Thus,
when x is an integer, genfact (, ,1) ≡ ! and genfact (, /2,2) ≡ !!.

15.2.1.2 Simplification

15.2.2 Binomials

binomial(x,y) [function]

The binomial coefficient is defined as
�



y

�

=
!

( − y)!y!
.

It can be used for numerical or symbolic computation. If x and y are integers, then
the numerical value of the binomial coefficient is simplified to an integer. If x and y
are real or complex float numbers, the binomial coefficient is computed according to
the generalized factorial. If x is a symbol and y an integer, the binomial coefficient
is expressed as a polynomial.

115

Chapter 16

Roots, exponential and
logarithmic functions

16.1 Roots

sqrt(expr) [function]

Returns the square root of expr.

16.1.1 Internal representation

Square roots, as well as n-th roots in general, are represented internally as ex-
pressions with the exponentiation operator to a rational exponent. So sqrt(x) is
represented by (1/2).

16.1.2 Simplification

radexpand default: true [option variable]

domain default: real [option variable]

When radexpand is set to its default value true and domain to its default value real,
sqrt(xˆ 2) is simplified to abs(x).

When radexpand is all or assume(x>0) has been executed, nth roots of factors
which are powers of n are pulled outside of the root. E.g. sqrt(16∗2) is simplified
to 4, and sqrt(2) to x.

When radexpand is false or (radexpand is true and domain is set to complex),
sqrt(2) will not be simplified.

rootscontract (expr) [function]

rootsconmode default: true [option variable]

rootscontract converts products (or quotients) of roots into roots of products (or
quotients). For example, rootscontract (sqrt()∗ y(3/2)) yields sqrt( y3).

rootsconmode controls, how rootscontract is applied.

116

16.1.3 Roots of negative real or of complex numbers

Maxima allows negative real numbers, and more generally, complex numbers as
arguments of any n-th root. If a real root exists, it is returned, otherwise Maxima
computes the principal complex root. This, however, in certain cases will not be
accomplished by a single command. Maxima does not automatically simplify com-
plex numbers, so it may be that the expression is simplified only partially and will
be returned containing a noun form. Further simplification can be achieved with
rectform.

(%i1) (-8)^(1/3)
(%o1) -2
(%i2) sqrt(-4)
(%o2) 2i
(%i3) (-8)^(1/4);
(%o3) (−1)

1
4 8

1
4

(%i4) float(%);
(%o4) 1.681792830507429 (−1)

1
4

(%i5) (-1)^(1/4)
(%o5) (−1)

1
4

(%i6) rectform(%);

(%o6)
%
p
2
+

1
p
2

(%i7) float(%);
(%o7) 0.7071067811865475 + 0.7071067811865475

16.1.3.1 Computing all n complex roots

In the preceeding section we saw that Maxima computes only the principal root
with the exponentiation operator to a rational exponent. If we want to compute all
n (pairwise different) complex roots, we can use function solve. The principal root
will usually be the last one in the list returned. As an example, we want to compute
all three cubic roots of 110 + 74.

(%i1) float(rectform(solve(z^3=110+74*%i,z)));
(%o1) [z=3.830127018922193i-3.366025403784439, z=-4.830127018922193i

-1.633974596215562, z=0.9999999999999999i+5.000000000000001]
(%i2) expand((5+%i)^3);
(%o2) 74i+110

Comparing this with

(%i1) float(rectform((110+74*%i)^(1/3)));
(%o2) 0.9999999999999997i+5.0

we notice that the expressions for the principal root differ slightly, apparantly due
to the internal use of different algorithms.

16.2 Exponential function

rexp (expr) [function]

exp ist die natürliche Exponentialfunktion. Maxima vereinfacht exp(x)sofort zu e.

117

16.2.1 Simplification

radcan (expr) [function]

Die Funktion radcan vereinfacht Ausdrücke, die die Exponentialfunktion, den Loga-
rithmus und Wurzeln enthalten.

(%i2) (%e^x-1)/(1+%e^(x/2));
radcan(%);

(%o1)
e − 1

e

2+1

(%o2) e

2−1

logsimp default: true [option variable]

Ist die Optionsvariable logsimp gesetzt, wird eine Exponentialform %e^(r*log(x))
≡ er n() zu x^r vereinfacht, falls r ∈ Z.

e_to_numlog default: false [option variable]

Ist die Optionsvariable %e_to_numlog gesetzt, wird eine Exponentialform der Art
%e^(r*log(x)) ≡ er n() zu x^r vereinfacht, falls r ∈ Q.

demoivre default: false [option variable]

Ist die Optionsvariable demoivre gesetzt, wird eine Exponentialform %e^(a+%i*b)
≡ e+ b mit , b ∈ R, also mit komplexem Exponenten in Standardform, mit der
Euler’schen Formel zu %e^a*(cos(b)+%i*sin(b)) ≡ e (cosb +  sinb), also zu
einem äquivalenten Ausdruck mit Kreisfunktionen, umgeformt.

Die Optionsvariable exponentialize führt die gegenteilige Umformung durch. Es
können also nicht beide Optionsvariablen gleichzeitig gesetzt sein. Beide Umfor-
mungen können auch durch Funktionen gleichen Namens bewirkt werden, ohne
daß die Optionsvariablen gesetzt sind.

(%i4) %e^(a+ %i*b);
%e^(a+ %i*b), demoivre:true;
%, exponentialize:true;
radcan(%);

(%o1) e+ b

(%o2) e (cosb +  sinb)

(%o3) e
�

e b − e− b

2
+
e b + e− b

2

�

(%o4) e+ b

%emode default: true [option variable]

118

Ist die Optionsvariable %emode gesetzt, wird eine Exponentialform %e^(%i*%pi*x)
≡ e π  vereinfacht

- falls x eine ganze Zahl, ein ganzzahliges Vielfaches von 1/2, 1/3, 1/4 oder 1/6 oder
eine Gleitkommazahl ist, die einer ganzen oder halbganzzahligen Zahl entspricht:
nach der Euler’schen Formel zu einer komplexen Zahl in der Standardform cos(%pi*x)+%i*sin(%pi*x)
und dann wenn möglich weiter vereinfacht,

- für andere rationale x zu einer Exponentialform %e^(%i*%pi*y), mit y = − 2k für
ein k ∈ N, sodaß |y| < 1 ist.

Eine Exponentialform %e^(%i*%pi*(x+y)) ≡ e π (+y) wird zu e π e π y umgeformt
und dann der erste Faktor entsprechend vereinfacht, wenn y ein Polynom oder etwa
eine trigonometrische Funktion ist, nicht jedoch, wenn y eine rationale Funktion ist.

Wenn mit komplexen Zahlen in Polarkoordinatenform gerechnet werden soll, kann
es hilfreich sein, %emode auf den Wert false zu setzen.

%enumer default: false [option variable]

In an exponential form with floating point exponent, %e is always evaluated to
floating point, and therefore the whole form. If both %enumer and numer are true,
%e is evaluated to floating point in any expression.

119

Chapter 17

Polynomials

17.1 Polynomial division

divide (p, q

,
�


�

� 1, . . . , n
��

) [function]

In its simple form, divide computes the quotient and remainder of the polynomial
p divided by the polynomial q, in the main polynomial variable x (which does not
have to be specified as the third argument, if the first two arguments contain only
one variable). divide returns a list of two elements, the first of which is the quotient
and second the remainder.

If more than one polynomial variable is specified, the last one (n) is the main vari-
able, if it is present. All variables specified are declared as potential main variables
of the rational expression. If n is not present, n−1 is the main variable, and so on;
see ratvars.

quotient (p, q

,
�


�

� 1, . . . , n
��

) [function]

This function does the same as divide, but only the quotient is returned.

remainder (p, q

,
�


�

� 1, . . . , n
��

) [function]

This function does the same as divide, but only the remainder is returned.

17.2 Partial fraction decomposition

partfrac (r, x) [function]

Does a complete partial fraction decomposition of the rational function r, which is
of the form

r() =
p()

q()

with polynomials p, q, with respect to the main variable x. This means, partfrac
expands r into a sum of terms comprising zero or more monomials and zero or
more partial fractions, each having a simpler denominator than r.

The first step of what partfrac does is a polynomial division p/q as accomplished
by divide. The quotient polynomial of this division constitutes the first part (zero

120

or more terms) of the sum returned by partfrac. In the second step, the rational
function rem/q, with rem being the remainder polynomial of the division, is decom-
posed into partial fractions. The resulting terms constitute the second part (zero or
more terms) of the sum returned by partfrac.

The importance of partial fraction decomposition primarily lies in the fact that the
resulting terms are much easier to integrate than the original rational function
(method of integration by partial fractions).

121

Chapter 18

Solving Equations

18.1 The different solvers

18.1.1 Linsolve

linsolve ([eq1, . . . , eqn], [1, . . . , k]) [function]

Solves the system of linear equations for the list of variables. Both sides of the
equations (if present) must be polynomials in the variables.

When globalsolve is true, each solved-for variable is bound to its value in the so-
lution of the equations. When backsubst is false, linsolve does not carry out back
substitution after the equations have been triangularized. This may be necessary in
very big problems where back substitution would cause the generation of extremely
large expressions.

When linsolve_params is true, linsolve also generates %r symbols used to repre-
sent arbitrary parameters as described under algsys. Otherwise, linsolve solves an
under-determined system of equations with some variables expressed in terms of
others.

18.1.2 Algsys

Solves a system of polynomial equations.

18.1.3 Solve

Maxima’s primary solver solve was written by Richard J. Fateman. It calls algsys.
It was written before the knowledge database was introduced, so solve does not
consider assumptions declared with assume.

fractional exponents should be eliminated from any equation befor using it with
solve. See the thread Pandora’s box, Jan. 28, 2021.

18.1.4 To_poly_solve, %solve

This solver, written by Barton Willis, is an alternative to using solve and is some-
times more powerful, for example with respect to trigonometric equations. But like
solve, it does not recognize assumptions specified with assume or declare.

122

Like solve, to_poly_solve uses algsys. Unlike solve, fractional exponents are elim-
inated from equation automatically by to_poly_solve. Sometimes this is not suc-
cessful, though, and it is better to do this manually as for solve.

to_poly_solve (
�

eq
�

� [eq1, . . . , eqn]
�

�{eq1, . . . , eqn}
�

,
�


�

� [1, . . . , k]
�

�{1, . . . , k}
�

, [optons]
�

)

[function of to_poly_solve]
%solve(. . .) [alias of to_poly_solve]

Tries to solve the equation or list of equations given in the first argument for the
variable or list of variables given in the second argument, possibly followed by
options. When to_poly_solve is able to determine the solution set, each element of
the solution set is a list of one element in a %union object.

(%i1) load(to_poly_solve)$
(%i2) to_poly_solve(x*(x-1), x);
(%o2) %non([ = 0], [ = 1])

When to_poly_solve is unable to determine the solution set, a %solve nounform is
returned. In this case, a warning is printed which tries to point to the specific cause
of the failure.

(%i3) to_poly_solve(x^k + 2* x + 1, x);

Nonalgebraic argument given to ’to_poly’
unable to solve
(%o3) %soe([k + 2 + 1 = 0], [])

Especially for trigonometric equations, the solver sometimes needs to introduce
one or more variables which can take an arbitrary integer value. These variables
have the form %zXXX, where XXX is an index.

(%i4) to_poly_solve(sin(x) = 0, x);
(%o4) %non([ = 2%p%z33 +%p], [ = 2%p%z35])

To re-index these variables starting from zero, use nicedummies.

(%i5) nicedummies(%);
(%o5) %non([ = 2%p%z0 +%p], [ = 2%p%z1])

18.2 Special tasks and techniques

18.2.1 Eliminate variables from a system of equations

eliminate ([eq1, . . . , eqn], [1, . . . , k]) [function]

Eliminates variables from equations (or expressions assumed equal to zero) by tak-
ing successive resultants. This returns a list of n − k equations with the k variables
1, . . . , k eliminated. First 1 is eliminated yielding n−1 equations, then 2 is elim-
inated, etc. If k = n, a single expression in a list is returned free of the variables
1, . . . , k. In this case solve is called to solve the last resultant for the last variable.

123

(%i1) eq1: 2*x^2 +y*x +z;
(%o1) z + y + 22

(%i2) eq2: 3*x +5*y -z -1;
(%o2) −z + 5y + 3 − 1
(%i3) eq3: z^2 +x -y^2 +5;
(%o3) z2 − y2 +  + 5
(%i4) eliminate([eq1, eq2, eq3], [y,z]);

(%o4) [2(454 + 33 + 112 + 81 + 124)]

The to_poly_solve package contains equivalent functions elim and elim_allbut. See
sect. 18.2.2 for an application of both eliminate and elim_allbut.

18.2.2 Solving trigonometric or hyperbolic expressions

Equations containing trigonometric or hyperbolic expressions often cannot be solved
directly, neither with solve nor with to_poly_solve. Such equations, however, can
often be solved by either exponentializing them before employing solve, or by poly-
nomializing them befor using to_poly_solve.

We will use an example to demonstrate both methods. Suppose that we want to
obtain a functional expression for the coordinate lines of polar coordinates. For this
we assume r = const. and r 6= 0, and we eliminate φ from the two equations

 = r cos(φ) and y = r sn(φ).

18.2.2.1 Exponentialize and solve or eliminate

(%i1) e1: x= r*cos(%phi)$
(%i2) e2: y= r*sin(%phi)$
(%i3) e3: exponentialize([e1,e2]);

(%o3) [ =
r
�

%e% φ +%e−% φ
�

2
, y = −

% r
�

%e% φ −%e−% φ
�

2
]

(%i4) eliminate(e3,[exp(%i*%phi)]);

(%o4) [4r2
�

−r2 + y2 + 2
�

]

With r 6= 0 we find the solution y2 = r2 − 2.

18.2.2.2 To_poly and to_poly_solve or elim(_allbut)

(%i3) load(to_poly_solve)$
(%i4) e3: to_poly([e1,e2],[%phi]);

(%o4) [[%
�

%g252 − 1
�

r + 2%g25y,
�

−%g252 − 1
�

r + 2%g25],
[2%g25 6= 0, 2%g25 6= 0], [%g25 =%e%φ]]

(%i5) elim_allbut(first(e3),[x,y,r]);

(%o5) [[r
�

r2 − y2 − 2
�

], [%g252r + r − 2%g25]]

124

Chapter 19

Linear Algebra

19.1 Introduction

19.1.1 Operation in total or element by element

A clear conceptional distinction should be made between operations which apply
to a structure (vector, matrix, etc.) as a whole, and operations which apply to all
the elements of a structure individually, i.e. element by element, joining the results
to a structure of the original kind to be returned. Examples of operations in total
are scalar product or matrix inversion, while examples of operations element by
element are scalar multiplication of a vector or matrix, or integration of a vector or
matrix, if their elements are functions.

19.2 Dot operator: general non-commutative product

a . b [infix operator]

Maxima’s dot operator "." represents the general non-commutative product, here
also called dot product. It can be used e.g. for the matrix product, section 19.4.9.1,
the scalar product, section 19.3.7, or the tensor product of vectors, section19.3.8.
But the dot operator is applicable as a non-commutative product to any other kind
of object, too.

In order to clearly distinguish the dot operator from the decimal point of a floating
point number, it is advisable to always leave a blank before and after the dot.

19.2.1 Exponentiation

a^^2 [infix operator]

The ^^ operator is the exponentiation of the non-commutative product ".", just as
^ is the exponentiation of the commutative product "*". In 2D display mode, the
exponent is enclosed in angle brackets.

(%i1) a.a;
(%o1) <2>

(%i2) b*b;
(%o2) b2

125

19.2.2 Option variables for the dot operator

The dot operator is controlled by a large number of flags. They influence the rules
which govern its simplification.

dot0nscsimp default: true [option variable]

When dot0nscsimp is true, a non-commutative product of zero and a nonscalar term
is simplified to a commutative product.

dot0simp default: true [option variable]

When dot0simp is true, a non-commutative product of zero and a scalar term is
simplified to a commutative product.

dot1simp default: true [option variable]

When dot1simp is true, a non-commutative product of one and another term is
simplified to a commutative product.

dotassoc default: true [option variable]

When dotassoc is true, an expression (A.B).C simplifies to A.(B.C).

dotconstrules default: true [option variable]

When dotconstrules is true, a non-commutative product of a constant and another
term is simplified to a commutative product. Turning on this flag effectively turns
on dot0simp, dot0nscsimp, and dot1simp as well.

dotdistrib default: true [option variable]

When dotdistrib is true, an expression A.(B+C) simplifies to A.B + A.C.

dotexptsimp default: true [option variable]

When dotexptsimp is true, an expression A.A simplifies to A<2>, which is A^^2.

dotident default: 1 [option variable]

dotident is the value returned by X<0>, which is X^^0.

dotscrules default: false [option variable]

When dotscrules is true, an expression A.SC or SC.A simplifies to SC*A, and A.(SC*B)
simplifies to SC*(A.B).

19.3 Vector

19.3.1 Representations and their internal data structure

Maxima does not have a specific data structure for vectors. A vector can be repre-
sented as a list or as a matrix of either one column or one row. The following shows
the internal data structure of these representations. Note that a matrix internally

126

is a special list of MaximaL lists, each of them representing one row, see section
19.4.1.

(%i1) u:[x,y,z];
(%o1) [x, y, z]
(%i2) :lisp $U

((MLIST SIMP) x y z)
(%i3) v:covect(u);

(%o3)













y

z











(%i4) :lisp $V
(($MATRIX SIMP) ((MLIST SIMP) x) ((MLIST SIMP) y) ((MLIST SIMP) z))

(%i5) w:transpose(u);

(%o5)
�

 y z
�

(%i6) :lisp $W
(($MATRIX SIMP) ((MLIST SIMP) x y z))

19.3.2 Option variables for vectors

There are only a few specific option variables for vectors. Most option variables
relate to either matrices or lists. See section 19.4.3 for option variables applicable
to matrices, and section 8.1 for those on lists. Thus, behavior of vector operations
may depend on the vector representations, see section 19.3.1. Row and column
vectors are matrices.

vect_cross default: false [option variable]

When vect_cross is true, the vector product defined as the operator ~in share pack-
age vect may be differentiated as in diff(x~y,t). Note that loading vect will set
vect_cross to true.

19.3.3 Construct, transform and transpose a vector

A list can be constructed by entering the elements inside of square brackets, sepa-
rated by commas.

(%i1) v:[x,y,z];
(%o1) [x, y, z]

Special functions for creating lists (e.g. makelist and create_list) are described in
section 8.1.

CVect (1, 2, . . . , n) [function of rs_vector]
vect (1, 2, . . . , n) [function of rs_vector]
RVect (1, 2, . . . , n) [function of rs_vector]

CVect and vect (synonym, kept for backward compatibility) construct a column vec-
tor which is a matrix of one column and n rows, containing the arguments. RVect

127

constructs a row vector which is a matrix of one row and n columns, containing the
arguments.

(%i1) CVect(x,y,z);

(%o1)













y

z











(%i2) RVect(x,y,z);
(%o2)

�

 y z
�

MakeList (x,n) [function of rs_vector]
MakeCVect (x,n) [function of rs_vector]
MakeRVect (x,n) [function of rs_vector]

These functions create a vector in the respective representation with the compo-
nents being the elements 1, . . . , n of an undeclared array named x. The first argu-
ment of this function must not be bound and must not have any properties. Note
that MakeList is not identical with system function makelist, but it makes use of it.

(%i1) x:MakeList(x,3);
(%o1) [1, 2, 3]
(%i2) y:MakeCVect(y,3);

(%o2)











y1

y2

y3











(%i3) z:MakeRVect(z,3);

(%o3)
�

z1 z2 z3

�

System function genmatrix can be used to construct a column or row vector from
an undeclared array, too, but with symbolic elements having two indices instead of
one, as for matrices.

(%i1) x:genmatrix(x,3,1);

(%o1)











1,1

2,1

3,1











(%i2) x:genmatrix(x,1,3);

(%o2)
�

1,1 1,2 1,3

�

The following functions achieve transformation between different representations.

columnvector (L) [function of eigen]
covect (L) [function of eigen]

columnvector takes a list L and returns a column vector which is a matrix of one col-
umn and length (L) rows, containing the elements of the list L. covect is a synonym
for columnvector.

128

(%i1) covect([x,y,z]);

(%o1)













y

z











transpose (v) [function]

Transposes a list or a row vector into a column vector, and a column vector into a
row vector. For the more general transposition of a matrix, see transpose (M).

Transpose (v) [function of rs_vector]

Transposes a list or a row vector into a column vector, and a column vector into a
list.

VtoList (v) [function of rs_vector]

Transforms a vector of any kind into a list. If v is already a list, it will be returned.

VtoCVect (v) [function of rs_vector]

Transforms a vector of any kind into a column vector. If v is already a column vector,
it will be returned. Note that transpose(VtoList(v)) will also transform a vector of
any kind into a column vector.

VtoRVect (v) [function of rs_vector]

Transforms a vector of any kind into a row vector. If v is already a row vector, it
will be returned. Note that transpose(transpose(VtoList(v))) will also transform a
vector of any kind into a row vector.

19.3.4 Dimension of a vector

System function length(v) can be used to determine the dimension of a column
vector or list. We should not talk about the length of a vector here, because this
term is used for the norm of a vector.

VDim(v) [function of rs_vector]

Returns the dimension of a vector, independently of its representation.

19.3.5 Indexing: refering to the elements of a vector

While elements of a list are addressed simply by providing the number of the ele-
ment in square brackets, elements of a column vector or a row vector (as being ma-
trices) are addressed by two arguments in square brackets, separated by a comma,
where the first argument specifies the row and the second one the column.

19.3.6 Arithmetic operations and other MaximaL functions appli-
cable to vectors

listarith [option variable]

129

Scalar multiplication of a vector and arithmetic operations between vectors work
element by element, if the flag listarith is true, which is the default. They are only
possible between vectors of the same type, with the exception that lists and column
vectors can be combined. In this case, the result will be a column vector.

distribute_over [option variable]

Many other computational or simplifying/manipulating MaximaL functions can be
applied to vectors, which means that they operate element by element. The flags
doallmxops and distribute_over must be true (default). Examples are diff, factor,
expand.

19.3.7 Scalar product

19.3.7.1 Dot operator

The scalar product, dot product, or inner product  ·  of two real valued vec-
tors v and w, which, in case of a list representation of the vectors, is equal to sum
(v[i]*w[i], i, 1, length(v)) can be built with the dot operator for the non-commutative
matrix product, see sect. 19.4.9.1. The arguments need to have the same dimen-
sion, but can be of any representation, except for the combination c.r, where c is
a column vector and r is a row vector or a list. This combination, instead, will re-
turn the tensor product of two vectors, see sect. 19.3.8. Hence, this operator is
non-commutative with respect to the combination of vector representations. For
a commutative way (with respect to the combination of vector representations) of
computing the scalar product see the operator SP. The non-commutative scalar
product of complex valued vectors can be computed with SP, too, of with functions
inprod or Inprod.

(%i1) powerdisp:true$
(%i2) v:MakeCvect(v,3)$ w:MakeCvect(w,3)$
(%i3) v . w;
(%o3) 11 + 22 + 33

The dot operator is controlled by a number of flags which are described in section
19.2.

19.3.7.2 innerproduct, inprod, Inprod

innerproduct (v,w) [function of eigen]
inprod (v,w) [function of eigen]

Returns the inner product (also called the scalar product or dot product) of two
vectors v and w, which can be lists of equal length, both column or both row vectors
of equal dimension. The return value is

conjgte() . ,

where "." is the dot operator. This function can be applied to complex and real
valued vectors.

130

Inprod (v,w) [function of rs_vector]

Returns, under the same conditions as inprod,

 . conjgte(),

which is equal to −nprod(,).

19.3.7.3 SP

v SP w [infix operator of rs_vector]

The infix operator SP computes the scalar product of two complex or real valued
vectors of equal dimension, independently of their representations. It is a commu-
tative version (with respect to the combination of vector representations) of the dot
operator for real valued vectors and of Inprod for complex valued vectors. Inter-
nally, both vectors are transformed to column vectors first, then the dot operator
or Inprod is employed. By this procedure all flags which control the dot operator
stay valid.

(%i1) v:MakeCvect(v,3)$ w:MakeRvect(w,3)$
(%i2) c SP r;
(%o2) 11 + 22 + 33

19.3.8 Tensor product

The non-commutative tensor product ⊗ can be computed with the dot operator,
see section 19.3.7, if the first argument is a column vector of dimension m and the
second argument is either a row vector or a list of dimension n. The arguments
need not have the same dimension. The result will be an m × n matrix. For a
description of the flags that control the dot operator, see section 19.2. For a way
to compute the tensor product independently of the vector representations see the
operator TP.

(%i1) v:MakeCvect(v,3)$ w:MakeRvect(w,3)$
(%i2) v . w;

(%o2)











11 22 13

21 22 23

31 32 33











v TP w [infix operator of rs_vector]

The infix operator TP computes the tensor product of two vectors of any represen-
tation. The arguments need not have the same dimension. TP returns an m × n
matrix. Internally, the first argument is transformed to a column vectors, the sec-
ond one to a row vector, then the dot operator is employed. By this procedure all
flags which control the dot operator stay valid.

(%i1) v:MakeCvect(v,3)$ w:MakeCvect(w,3)$
(%i2) v TP w;

131

(%o2)











11 22 13

21 22 23

31 32 33











19.3.9 Norm and normalization

VNorm(

, p
�

) [function of rs_vector]

Computes the separation sqrt(abs(v.v)) of a vector v supplied as the first argument.
The separation is a generalization of the norm, applicable even for an inner product
which is not positive definite. If no second argument is present, for the inner product
function SP is used, which computes the norm independently of the representation
of v. If the second argument is present, it denotes the function to be used instead.
ip has to be a prefix function of two arguments. If an infix function is to be used
instead, it must be enclosed in double quotes, e.g. "." for the dot operator.

(%i1) v:MakeCvect(v,3)$
(%i2) VNorm(v,".");

(%o2)
r

21 + 
2
2 + 

2
3

Normalize (v

,ip
�

) [function of rs_vector]
NormalizeColumns default: true [option variable]

Function Normalize Normalizes a column vector, row vector, list or matrix (column-
wise, if the global flag NormalizeColumns is true, row-wise otherwise) by dividing
each vector by its separation (e.g. norm) using function VNorm. If a function differ-
ent from SP shall be used by VNorm for the inner product, it has to be supplied as
the second argument to Normalize. If it is an infix operator, it has to be enclosed
in double quotes. The return value will be of the same type as obj and have a
separation equal to 1 (matrix: column-wise resp. row-wise).

(%i1) X:matrix([2,1,1],[0,3,0],[-1,0,4]);

(%o1)











2 1 1

0 3 0

−1 0 4











(%i2) Normalize(X);

(%o2)











2p
5

1p
2
p
5

1p
17

0 3p
2
p
5

0

− 1p
5

0 4p
17











(%i3) Normalize(X), NormalizeColumns:false;

(%o3)











p
2p
3

1p
2
p
3

1p
2
p
3

0 1 0

− 1p
17

0 4p
17











unitvector (v) [function of eigen]
uvect (v) [function of eigen]

132

Returns the normalized vector /norm(), probably using eigen’s function inner-
product for the inner product. This means that it can be used for the standard
Euclidean or complex (positive definite) scalar product only.

19.3.10 Vector equations

19.3.10.1 Extract component equations from a vector equation

ExtractCequations (arg) [function of rs_vector]

Extracts the component equations from a vector equation arg. The vectors on the
right and on the left side of the equation may be of any, but must be of identical
representation, with the exception that a combination of list and column vector is
possible, too. After the simplfications done at evaluation time of arg, this vector
equation has to be condensed to only one vector on each side. Use all kinds of
simplification functions first, so that this is guaranteed. ExtractCEquations returns
a list of VDim(arg) component equations which e.g. can be forwarded to function
solve.

(%i1) u:MakeCvect(u,3)$ v:MakeCvect(v,3)$
(%i2) w:makelist(w[i],i,1,3)$
(%i3) ExtractCEquations(u+v=w);
(%o3) [1 + 1 =1, 2 + 2 =2, 3 + 3 =3]

19.3.11 Vector product

Standard Maxima has no operator to compute the vector or cross product between
two 3-dimensional vectors.

v VP w [infix operator of rs_vector]

The infix operator VP computes the vector product of two vectors of any represen-
tation, but dimension three, returning a column vector.

(%i1) v:MakeCvect(v,3)$ w:MakeCvect(w,3)$
(%i3) v VP w;

(%o3)











23 − 23

13 − 13

12 − 12











19.3.12 Mixed product and double vector product

These products, of course, can be computed by combining the operations of scalar
and vector product. The mixed product is

(%i1) v:MakeCvect(v,3)$ w:MakeCvect(w,3)$ u:MakeCvect(u,3)$
(%i4) expand(u SP (v VP w));

(%o4) 123 − 123 − 123 + 123 + 123 − 123

(%i5) expand((u VP v) SP w));

(%o5) 123 − 123 − 123 + 123 + 123 − 123

And for the double vector product we get

133

(%i7) expand(u VP (v VP w));

(%o7)











1 33 − 1 3 3 + 1 22 − 1 2 2

2 33 − 2 3 3 − 1 12 + 11 2

−2 23 − 1 13 + 22 3 + 11 3











19.3.13 Basis

In order to avoid problems arising from the way Maxima implements indexed data
objects, i.e. by using undeclared arrays, it is advisable instead to define a basis
by using a matrix and to implement any operation on the basis as a whole as an
operation on this matrix. Although a matrix in Maxima is structured by rows, it is
preferable to consider the individual vectors as columns, as it is usually done in
mathematics, e.g. for a basis transformation matrix. In this case a vector cannot
be addressed by simply indexing the matrix, its representation being a list. But
this representation of a vector is seldomly used and does not balance the drawback
of mentally having to transpose a row-wise representation of the basis. It is easy
to transform the matrix into a list of column vectors. In the following example, the
individual column vectors can be addressed either as e,  = 1,2,3, or as e[]. In the
last line, the metric tensor (Gram’s matrix, positive definite representation matrix)
of the Euclidean scalar product ist generated from this particular basis.

(%i1) E:matrix([1,0,0],[0,1,0],[0,0,1]);

(%o1)











1 0 0

0 1 0

0 0 1











(%i2) e:makelist(concat(e,i)::col(E,i),i,1,3);

(%o2) [











1

0

0











,











0

1

0











,











0

0

1











]

(%i3) e1;

(%o3)











1

0

0











(%i4) e[1];

(%o4)











1

0

0











(%i5) genmatrix(lambda([x,y],e[x] . e[y]),3,3);

(%o5)











1 0 0

0 1 0

0 0 1











134

19.4 Matrix

19.4.1 Internal data structure

A matrix internally is a list of MaximaL lists, each of them representing one row.
Nevertheless, a matrix has its own special data type in Maxima. Thereby Maxima
can distinguish between a matrix and any other 2-dim. list structure.

(%i1) M:matrix([1,2,3],[4,5,6],[7,8,9]);

(%o1)











1 2 3

4 5 6

7 8 9











(%i2) :lisp |$m|
(($MATRIX SIMP) ((MLIST SIMP) 1 2 3) ((MLIST SIMP) 4 5 6) ((MLIST

SIMP) 7 8 9))

19.4.1.1 matrixp

matrixp (expr) [function]

Returns true if expr is a matrix, otherwise false.

(%i3) matrixp(M);
(%o3) true

19.4.2 Indexing: Refering to the elements of a matrix

Square brackets are used for indexing matrices, that is to refer to its elements.
Indices start with 1. The first argument ist the row, the second the column. See the
example below.

(%i4) M[2,1];
(%o4) 4

19.4.3 Option variables for matrices

A number of option variables enable, disable and control different kinds of matrix
operations. See section 8.1 for option variables on lists, and section 19.3.2 for those
on vectors.

doallmxops default: true [option variable]

When doallmxops is true, all operations relating to matrices are carried out. When
it is false, the settings of the individual dot switches govern which operations are
performed.

domxmxops default: true [option variable]

135

When domxmxops is true, all matrix-matrix or matrix-list operations are carried
out, but not scalar-matrix operations; if this switch is false, such operations are not
carried out.

domxnctimes default: false [option variable]

When domxnctimes is true, non-commutative products of matrices are carried out.

doscmxops default: false [option variable]

When doscmxops is true, scalar-matrix operations are carried out.

doscmxplus default: false [option variable]

When doscmxplus is true, scalar-matrix operations yield a matrix result. This switch
is not subsumed under doallmxops.

matrix_element_add default: + [option variable]

matrix_element_mult default: * [option variable]

matrix_element_transpose default: false [option variable]

ratmx default: false [option variable]

When ratmx is false, matrix addition, subtraction, and multiplication as well as
function determinant are performed in the representation of the matrix elements
and cause the result of matrix inversion to be returned in general representation.

When ratmx is true, the operations mentioned above are performed in CRE form
and the result of matrix inverse is returned in CRE form. Note that this may cause
the elements to be expanded (depending on the setting of ratfac) which might not
always be desirable.

scalarmatrixp default: true [option variable]

When scalarmatrixp is true, then whenever a 1 x 1 matrix is produced as a result
of computing the dot product of matrices, it is simplified to a scalar, being the
sole element of the matrix. When scalarmatrixp is all, then all 1 x 1 matrices
are simplified to scalars. When scalarmatrixp is false, 1 x 1 matrices are never
simplified to scalars.

Known bug: The value returned by computing the dot product v.v of a column or
row vector or a list v with v^^2 is a 1 x 1 matrix, even if scalarmatrixp is true. In
case of v being a list, it is even a 1 x 1 matrix when scalarmatrixp is all.

19.4.4 Build a matrix

There are several ways to build a matrix. It can be entered as a whole or it can
be constructed column by column, row by row, or even by joining submatrices.
A matrix can also be extracted from a bigger matrix. Special types of matrices
like identity or diagonal matrices can easily be built with the respective specialized
Maxima functions. Genmatrix allows for creating a matrix with a lambda function.

136

19.4.4.1 Enter a matrix

matrix (Lr1 , . . . , Lrm) [function]

This function can be used to enter an m× n matrix. Each row is given as a MaximaL
list and must contain the same number n of elements. In wxMaxima the menu
Algebra / Enter matrix can be used to facilitate the input.

(%i1) M:matrix([1,2,3],[4,5,6],[7,8,9]);

(%o1)











1 2 3

4 5 6

7 8 9











19.4.4.2 Append colums, rows or whole matrices

A matrix can be constructed by starting with a column or row vector and appending
columns at the right or rows at the bottom one by one. In the same way, columns
or rows can be appended to any existing matrix, too. The following functions can
even be used to append whole matrices at the right or bottom of an existing matrix.

addcol (M, Lc1 |M1, . . . , Lck |Mk) [function]
addrow (M, Lr1 |M1, . . . , Lrk |Mk) [function]

addcol (M, Lc1 , . . . , Lck) appends at the right of the m × n matrix M the k columns
containing the elements from lists Lc ,  = 1, . . . , k, each having m elements.

addrow (M, Lr1 , . . . , Lrk) appends at the bottom of the m × n matrix M the k rows
containing the elements from lists Lr ,  = 1, . . . , k, each having n elements.

addcol (M,M1, . . . ,Mk) / addcol (M,M1, . . . ,Mk) append at the right / bottom of the
m × n matrix M the k matrices M,  = 1, . . . , k, each having m rows / n columns.

Appending matrices and columns with addcol can even be arbitrarily combined.
Analogously, this holds for addrow.

(%i1) M:Cvect(a,b,c);

(%o1)













b

c











(%i2) N:addcol(M,[d,e,f]);

(%o2)











 d

b e

c ƒ











(%i3) addcol(N,N);

(%o3)











 d  d

b e b e

c ƒ c ƒ











137

(%i4) addcol(N,[1,2,3],N,[4,5,6]);

(%o4)











 d 1  d 4

b e 2 b e 5

c ƒ 3 c ƒ 6











19.4.4.3 Extract a submatrix, column or row

submatrix (〈r1, . . . , rk, 〉M〈, c1, . . . , c〉) [function]

Returns a new matrix constructed from the m × n matrix M, with rows r1, . . . , rk
and/or columns c1, . . . , c deleted, row indices being 1 ≤ r ≤ k and column indices
1 ≤ cj ≤ n. Note that indices preceeding M are interpreted as rows, while those
following M are interpreted as columns. The respective indices don’t have to be in
numerical order.

row (M,i) [function]

Returns the i-th row of the matrix M. The return value is a row vector (which is a
matrix).

col (M,j) [function]

Returns the j-th column of the matrix M. The return value is a column vector (which
is a matrix).

19.4.4.4 Build special matrices

19.4.4.4.1 Identity matrix

ident (n) [function]

Returns an n × n identity matrix.

19.4.4.4.2 Zero matrix

zeromatrix (m,n) [function]

Returns an m × n zero matrix.

19.4.4.4.3 Diagonal matrix

diagmatrix (n,x) [function]

Returns an n× n diagonal matrix, each element of the diagonal containing x, which
can be any kind of expression. If x is a matrix, it is not copied; all diagonal elements
refer to the same instance of x.

19.4.4.5 Genmatrix

genmatrix (, 2, j2

, 1

, j1
��

) [function]

138

This function creates a matrix










1 j1 · · · 1 j2
...

...

2 j1 · · · 2 j2











from argument , which must be either a declared array (created by array, but not
by make_array), an undeclared array, an array function or a lambda function of
two arguments, taking [1, j1] as the first and [2, j2] as the last element of the
matrix. If j1 is omitted, it is assumed to be equal to 1. If both j1 and 1 are omitted,
both are assumed to be equal to 1.

An example with an undeclared array is given in section 19.3.3, with a lambda
function in section 19.3.13.

19.4.5 Transform between representations

Transformation between different representations of a matrix can be achieved with
the help of Maxima functions apply, makelist, and map or maplist. We give three
examples.

19.4.5.1 List of sublists -> matrix

A list of sublists can be transformed into a corresponding matrix in the following
way. Note that a sublist corresponds to a row.

(%i1) L:[[1,0,0],[0,1,0],[1,2,3]];
(%o1) [[1,0,0],[0,1,0],[1,2,3]]
(%i2) M:apply(matrix,L);

(%o2)











1 0 0

0 1 0

1 2 3











19.4.5.2 Matrix -> list of column vectors

A matrix can be transformed into a list of column vectors, see example in sect.
19.3.13. In the following example we use the transpose of matrix M generated
above.

(%i3) N:makelist(col(transpose(M),i),i,1,3);

(%o3) [











1

0

0











,











0

1

0











,











1

2

3











]

139

19.4.5.3 List of column vectors -> list of sublists

A list of column vectors can be transformed into a list of lists.

(%i4) map(VtoList,N);
(%o4) [[1,0,0],[0,1,0],[1,2,3]]

19.4.6 Functions applied element by element

19.4.6.1 Arithmetic operations and other MaximaL functions applicable
to matrices

The operations + (addition), - (subtraction), * (multiplication), and / (division), are
carried out element by element when the operands are two matrices, a scalar and
a matrix, or a matrix and a scalar.

The operation ˆ (exponentiation, equivalently **) is carried out element by element,
if the operands are a scalar and a matrix or vice versa, but not if the operands are
two matrices.

Differentiation and integration of a matrix is also performed element by element,
each element being considered as a function.

19.4.6.2 Mapping arbitrary functions and operators

matrixmap (ƒ ,M1, . . . ,Mn) [function]

Applies an arbitrary function or operator f of n arguments to matrices M1, . . . ,Mn el-
ement by element, returning a matrix with element [i,j] equal to ƒ (M1[, j], . . . ,M1[, j]).
The number of matrices has to correspond to the number of arguments required by
f. matrixmap is a version of function map being applicable to matrices (which map
is not). See there for more explanations and examples.

In the following example, f is unbound at first and as such can have an arbitrary
number of arguments, always returning a noun expression.

(%i1) M:matrix([1,2,3],[4,5,6],[7,8,9])$ matrixmap(f,M);

(%o2)











ƒ (1) ƒ (2) ƒ (3)

ƒ (4) ƒ (5) ƒ (6)

ƒ (7) ƒ (8) ƒ (9)











(%i3) N:matrix([a,b,c],[d,e,f],[g,h,i])$ matrixmap(f,M,N);

(%o4)











ƒ (1, ) ƒ (2, b) ƒ (3, c)

ƒ (4, d) ƒ (5, e) ƒ (6, ƒ)

ƒ (7, g) ƒ (8, h) ƒ (9, )











(%i5) f(x):=2*x$ matrixmap(f,M);

(%o6)











2 4 6

8 10 12

14 16 18











140

(%i7) matrixmap("=",N,M);

(%o7)











 = 1 b = 2 c = 3

d = 4 e = 5 ƒ = 6

g = 7 h = 8  = 9











fullmapl (ƒ ,M1, . . . ,Mn) [function]

fullmapl is a version of function fullmap being applicable to lists and matrices. See
section 8.1 for explanations and examples.

19.4.7 Transposition

transpose (M) [function]

Transposes matrix M. transpose can also be used to transform a list into a column
vector. For the general transposition of vectors, see transpose (v) and Transpose.

19.4.8 Inversion

Matrix inversion can be carried out with function invert, or directly by matrix expo-
nentiation with -1. Both methods are equivalent.

invert (M) [function]

invert(M) is equivalent to M^^−1 , that is M<−1>. The inverse of the matrix M is
returned. The inverse is computed via the LU decomposition.

When ratmx is true, elements of M are converted to canonical rational expressions
(CRE), and the elements of the return value are also CRE. When ratmx is false,
elements of M are not converted to a common representation. In particular, float
and bigfloat elements are not converted to rationals.

When detout is true, the determinant is factored out of the inverse. The global flags
doallmxops and doscmxops must be false to prevent the determinant from being
absorbed into the inverse. xthru can multiply the determinant into the inverse.

invert does not apply any simplifications to the elements of the inverse apart from
the default arithmetic simplifications. ratsimp and expand can apply additional
simplifications. In particular, when M has polynomial elements, expand(invert(M))
might be preferable.

19.4.9 Product

19.4.9.1 Non-commutative matrix product

The the non-commutative matrix product can be built with the dot operator, see
section 19.2. The number of rows of argument a has to equal the number of
columns of b. The dot operator is controlled by a number of flags which are de-
scribed in section 19.2.

141

19.4.10 Rank

rank (M) [function]

Computes the rank of the matrix M. That is, the order of the largest non-singular
subdeterminant of M.

rank may return the wrong answer, if it cannot determine that a matrix element
equivalent to zero is indeed so.

19.4.11 Gram-Schmidt procedure

19.4.11.1 Orthogonalize

gramschmidt (M

, p
�

) [function of eigen]

Carries out the Gram-Schmidt orthogonalization procedure on a set of vectors,
given either as the rows (!) of a matrix M or a list of lists, the sublists each having
the same number of elements. M is not modified by gramschmidt.

The second argument ip, if present, denotes the function employed by gramschmidt
for the inner product; otherwise the function innerproduct will be used. ip has to be
a prefix function of two arguments. If an infix function is to be used instead, it must
be enclosed in double quotes, e.g. "." for the dot operator.

The return value is a list of lists, the sublists of which are orthogonal and span the
same space as x. If the dimension of the span of x is less than the number of rows or
sublists, some sublists of the return value are zero. factor is called at each stage of
the algorithm to simplify intermediate results. As a consequence, the return value
may contain factored integers.

19.4.11.2 Orthonormalize

GramSchmidt (M

, p
�

) [function of rs_vector]

Carries out the Gram-Schmidt orthonormalization procedure on a set of vectors,
given either as the columns of a matrix M, a list of column vectors or a list of
lists, the sublists each having the same number of elements. M is not modified by
GramSchmidt.

GramSchmidt calls function gramschmidt.

The return value is a matrix, the vectors being its columns. The vectors are not only
orthogonal and span the same space as x, but they are also normalized.

19.4.12 Triangularize

triangularize (M) [function]

Returns the upper triangular form of the matrix M, as produced by Gaussian elim-
ination.1 The return value is the same as from echelon, except that the leading

1This has nothing to do with triangularization of endomorphisms.

142

nonzero coefficient in each row is not normalized to 1.

The matrix M is positive definite, iff all diagonal elements of triangularize(M) are [wikDefin20,
p. 6]positive. No statement on other forms of definiteness can be made. See math sect.

47.9.3.6.

19.4.13 Eigenvalue, eigenvector, diagonalize

eigenvalues (M) [function of eigen]
eivals (M) [function of eigen]

eivals is a synonym for eigenvalues. This function from the eigen package returns
a list of two sublists. The first sublist gives the eigenvalues of the matrix M, while
the second one gives the algebraic multiplicities of the eigenvalues in the corre-
sponding order. The package eigen.mac is loaded automatically when eigenvalues
or eigenvectors is called. This can also be done manually by load (eigen).

eigenvalues calls the Maxima function solve to find the roots of the characteristic
polynomial of the matrix. Sometimes solve may not be able to find the roots of the
polynomial; in this case some other functions in this package (except innerproduct,
unitvector, columnvector and gramschmidt) will not work. Sometimes solve may
find only a subset of the roots of the polynomial. This may happen when the fac-
toring of the polynomial contains polynomials of degree 5 or more. In such cases
a warning message is displayed and only the roots found and their corresponding
multiplicities are returned.

In some cases the eigenvalues found by solve may be complicated expressions.
In casus irreducibilis 2 the return value may contain complex terms which are not
obvious to be zero. However, it may be possible to simplify the result using other
functions. For example, the following real symmetric matrix should have real eigen-
values only.

(%i1) M: matrix([5/4,1/2,1/2],[1/2,5,-1],[1/2,-1,2]);

(%o1)











5
4

1
2

1
2

1
2 5 −1
1
2 −1 2











(%i2) float(ratsimp(rectform(eigenvalues(M))));
(%o2)

[[2.124542032328667,0.7946677527382047,5.330790214933128],[1.0,1.0,1.0]]

charpoly (M,x) [function]

Returns the characteristic polynomial for the matrix M with respect to variable x,
i.e. determinant (M − diagmatrix (length (M), x)).

2See thread maxima-discuss from Sept. 8, 2020.

143

19.5 Determinant

determinant (M) [function]

Computes the determinant of matrix M. The form of the result depends upon the
setting of the flag ratmx. There is a special routine for computing the determinant
of sparse matrices which is called when both ratmx and sparse are true.

19.5.1 Option variables for determinant

Some option variables for matrices, see section 19.4.3, apply to determinant, too.

sparse default: false [option variable]

When sparse and ratmx are true, determinant will use special routines for comput-
ing sparse determinants.

144

Chapter 20

Limits

145

Chapter 21

Sums, products and series

21.1 Sums and products

21.1.1 Sums

21.1.1.1 Introduction

A consecutive sum, with the index running over a range of consecutive integers,
can be created with function sum. I can be displayed in sigma notation, simplified
and evaluated. Sums can also be differentiated or integrated, and they can be
subject to limits.

A selective sum, with the index only taking selected indices from a list, is created
with function lsum.

21.1.1.2 Sum: consecutive indices

sum (expr, , 0, 1) [function]

Builds a "continuous" summation of expr (evaluated) as the summation index i (not
evaluated) runs from 0 to 1 (both evaluated). Both a noun form and a sum that by
simplification and evaluation cannot be resolved are displayed in sigma notation.
By setting 1 to inf for infinity we obtain a series, see section 21.2.2.

(%i1) ’sum(1/k!,k,0,4);

(%o1)
4
∑

k=1

1

k!
(%i2) sum(1/k!,k,0,4);

(%o2)
65

24
(%i3) sum(1/k!,k,1,n);

(%o3)
n
∑

k=1

1

k!

(%i4) sum (a[i], i, 1, 5);
(%o4) 1 + 2 + 3 + 4 + 5
(%i5) sum (a(i), i, 1, 5);
(%o5) a(5) + a(4) + a(3) + a(2) + a(1)

146

21.1.1.2.1 Simplification

21.1.1.2.1.1 Simpsum

Some basic rules are applied automatically to simplify sums. More rules are acti-
vated by setting the flag simpsum to true.

simpsum default: false [option variable]

When simpsum is set, the result of a sum is simplified. This simplification may
sometimes be able to produce a closed form. See section 21.2.2 for the application
to series.

(%i1) sum (2^k + k^2, k, 0, n);

(%o1)
n
∑

k=0

�

2k + k2
�

(%i2) sum (2^k + k^2, k, 0, n), simpsum;

(%o2) 2n+1 +
2n3 + 3n2 + n

6
− 1

21.1.1.2.1.2 Simplify_sum

Package simplify_sum contains function simplify_sum which is more powerful in
finding closed forms than setting flag simpsum.

simplify_sum (expr) [function of simplify_sum]

Tries to simplify all sums appearing in expr to a closed form.

(%i1) load(simplify_sum);

(%o1) C: /maxima−5.40.0/. . / share /maxima/5.40.0/share / solve_rec / simplify_sum .mac

(%i2) sum(2^k+k^2,k,0,n);

(%o2)
n
∑

k=0

2k + k2

(%i3) simplify_sum(%);

(%o3) 2n+1 +
2n3 + 3n2 + n

6
− 1

21.1.1.3 Lsum: selected indices

lsum (expr, i, L) [function]

Represents the sum of expr for each index contained in the list L. A noun form
is returned, if the L does not evaluate to a list. All arguments except for i are
evaluated.

(%i1) ’lsum (x^i, i, [1, 2, 7]);

(%o1)
∑

 in[1,2,7]



(%i2) lsum (x^i, i, [1, 2, 7]);
(%o2) 7 + 2 + 

147

21.1.1.4 Nusum

nusum (expr, , 0, 1) [function]

This is a new sum function, more powerful than sum, capable of simplification and
of finding more closed forms, of series as well.

The noun form of nusum is not displayed in sigma notation. However, sigma nota-
tion is used for the return value, when nusum cannot simplify expr.

Let’s construct an example, where sum throws the towel. (For the last computation,
which redoes the summation, see unsum).

(%i1) sum (i^4*4^i/binomial(2*i,i), i, 0, n), simpsum;

(%o1)
n
∑

=0

4 4




2







(%i2) nusum (i^4*4^i/binomial(2*i,i), i, 0, n);

(%o2)
2 (n + 1)

�

63n4 + 112n3 + 18n2 − 22n + 3
�

4n

693





2n

n





−
2

231

(%i3) unsum(%,n);

(%o3)
n4 4n




2n

n





21.1.1.5 Differentiating and integrating sums

Sums can be differentiated and integrated.

(%i1) s:sum((x-x0)^k,k,1,n);

(%o1)
n
∑

k=1

( − 0)k

(%i2) ’diff(s,x) = diff(s,x);

(%o2)
d

d

n
∑

k=1

( − 0)k =
n
∑

k=1

k ( − 0)k−1

(%i3) ’integrate(s,x) = integrate(s,x);

(%o3)

∫ n
∑

k=1

( − 0)k d =
n
∑

k=1

( − 0)k+1

k + 1

21.1.1.6 Limits of sums

Sums can be subject to limits.

148

21.1.1.7 Unsum: undoing a sum

unsum (expr, n) [function]

This function is kind of magic. It undoes a definite (i.e. finite) summation done with
sum or nusum and having a symbol as the (finite) upper bound. The undo is done
by taking the closed form and returning the expression under the sigma sign. The
argument expr must be the closed form of a definite summation and n the symbol
designating its (finite) upper bound. The lower bound of the original sum does not
matter, it can be an integer or a symbol. (This implies, that unsum cannot find it
out, either.) See nusum for a more sophisticated example, if you still don’t believe
it.

(%i1) nusum(i^2,i,0,n);

(%o1)
n (n + 1) (2n + 1)

6

(%i2) unsum(%,n);

(%o2) n2

(%i3) nusum(i^2,i,m,n);

(%o3)
(n −m + 1)

�

2n2 + 2mn + n + 2m2 −m
�

6

(%i2) unsum(%,n);

(%o2) n2

21.1.2 Products

21.2 Series

21.2.1 Introduction

Maxima contains functions powerseries and taylor for finding the series of differen-
tiable functions. It also has tools such as nusum capable of finding the closed form
of some series. Operations such as addition and multiplication work as usual on
series. This section presents the global variables which control the expansion.

Series, including power series and truncated taylor expansions, can be differenti-
ated and integrated.

21.2.2 Sum or nusum with infinite upper bound

In Maxima a series is constructed using functions sum or nusum with the upper
bound set to inf for infinity. In case of sum, all simplification procedures described
for finite sums can be used for series as well. Function nusum is more powerful
concerning simplification, and it achieves closed forms more often than sum. We
give sum a try with a simple geometric series.

(%i1) ’sum(x^i,i,0,inf);

149

(%o1)
∞
∑

=0



(%i2) simpsum:true$ sum(x^i,i,0,inf);
Is |x|-1 positive, negative or zero? pos;
sum: sum is divergent. -- an error.

(%i3) sum(x^i,i,0,inf);
Is |x|-1 positive, negative or zero? neg;

(%o1)
1

1 − 

Function nusum has a different strategy of informing the user about the conditions
for convergence and divergence of the series.

(%i1) nusum(x^i,i,0,inf)$
(%i2) ChangeSign(ChangeSign(%,2),2,2);

(%o2)
∞+1

 − 1
+

1

1 − 

21.2.3 Power series

powerseries (expr, x, a) [function]

Returns the general form of the power series expansion for expr in the variable x
about the point a (which may be inf). Each time Maxima returns a power series
expansion, it creates a new summation index, starting with 1, 2, . . .

If powerseries is unable to expand expr, taylor may be used to give the first several
terms of the series.

(%i1) powerseries(sin(x),x,0);

(%o1)
∞
∑

1=0

(−1)1 2 1+1

(2 1 + 1)!

When verbose is true, powerseries prints progress messages before returning the
result.

(%i2) verbose:true$ powerseries(log(sin(x)/x),x,0);
trigreduce: failed to expand.

log
�

sin ()



�

trigreduce: try again after applying rule:

log
�

sin ()



�

=
∫ d

d
sin ()


sin ()


d

powerseries: first simplification returned

−
∫ 

0

csc (g494) sin (g494) − g494 cos (g494) csc (g494)

g494
dg494

powerseries: first simplification returned

150

−
g494 cot (g494) − 1

g494

powerseries: attempt rational function expansion of

1

g494

(%o3)
∞
∑

2=1

(−1)2 22 2−1 bern (2 2) 2 2

2 (2 2)!

The advanced running index of the g-variable generated by Maxima indicates that
during computation the preceding ones have already been used internally.

21.2.4 Taylor and Laurent series expansion

taylor (expr, , , p

, ′symp
�

)
�

� [function]

taylor (expr, [1, . . . , n],
�


�

� [1, . . . , n]
�

,
�

p
�

� [p1, . . . , pn]
�

)
�

�

taylor (expr, [[1, . . . , n],
�


�

� [1, . . . , n]
�

, p

, ′symp
�

])
�

�

taylor (expr, [[1, . . . , n], ,
�

p
�

� [p1, . . . , pn]
�

, ′symp
�

])
�

�

taylor (expr, [1, 1, p1], . . . , [n, n, pn])
�

�

taylor (expr, 1, 1, p1, . . . , n, n, pn)

This is the general form of function taylor. We will explain the single-variable and
the multi-variable forms separately and then the ’asymp option.

21.2.4.1 Single-variable form

taylor (expr, x, a, p) [function]

This basic form of taylor expands the expression expr in a truncated Taylor or Lau-
rent series in the variable x around the point a, containing terms through ( − )p.
Maxima precedes the output of a Taylor expansion by a tag /T/ directly after the
output tag. (In wxMaxima this is not done, if taylor appears on the right side of an
assignment.) This indicates that Maxima uses a special internal representation for
this type of data. (The CRE form is yet another special internal data format, tagged
with /R/ in Maxima output.)

(%i1) taylor(sqrt(x+1),x,0,3);

(%o3) /T/ 1 +


2
−
2

8
+
3

16
+ ...

We can evaluate both the original function and Taylor expansions of various orders
at a point near a with function at to see how the approximation proceeds.

(%i1) t1:taylor(sqrt(x+1),x,0,1);
t2:taylor(sqrt(x+1),x,0,2);
t3:taylor(sqrt(x+1),x,0,3);
t5:taylor(sqrt(x+1),x,0,5);
at([t1,t2,t3,t5,sqrt(x+1)],x=0.3);

151

(%o1) /T/ 1 +


2
+ ...

(%o2) /T/ 1 +


2
−
2

8
+ ...

(%o3) /T/ 1 +


2
−
2

8
+
3

16
+ ...

(%o4) /T/ 1 +


2
−
2

8
+
3

16
−
54

128
+
75

256
+ ...

(%o5) [1.15, 1.13875, 1.1404375, 1.1401875390625, 1.140175425099138]

21.2.4.2 Multi-variable form

taylor (expr, [1, . . . , n],
�


�

� [1, . . . , n]
�

,
�

p
�

� [p1, . . . , pn]
�

)

This basic multi-variable form of taylor expands expr in the variables 1, . . . , n
about the point (1, . . . , n), up to combined powers of p or up to combined powers
of mx(p) for  = 1, . . . , n. (Note that here p is not equal to the number of terms as
it is in the single-variable form.) If  is identical for all , it can be given as a single
simple variable instead of a list. Thus,  means the point (, . . . , )

︸ ︷︷ ︸

n tmes

.

taylor (expr, [1, 1, p1], . . . , [n, n, pn])

(The square brackets can be omitted.) This form is not only syntactically different
from the preceding one, but it also gives a different result, because expr is ex-
panded up to the power p for variable ,  = 1, . . . , n. Furthermore, terms are not
factored according to combined powers as in the preceding form, but according to
powers of the first, second, third, . . . variable.

(%i1) taylor(sin(x+y),[x,y],0,5);
expand(%);

(%o1) /T/ y +  −
3 + 3y 2 + 3y2 + y3

6
+ ...

(%o2) −
y3

6
−
y2

2
−
2y

2
+ y −

3

6
+ 

(%o3) taylor(sin(x+y),[x,0,2],[y,0,3]);
expand(%);

(%o3) /T/ y −
y3

6
+ ...+

�

1 −
y2

2
+ ...

�

 +

�

−
y

2
+
y3

12
+ ...

�

2 + ...

(%o4)
2 y3

12
−
y3

6
−
y2

2
−
2y

2
+ y + 

21.2.4.3 Option ’asymp

The option ’asymp can be applied to both the single- and the multi-variable form
of taylor. It returns an expansion of expr in negative powers of  − . The highest
order term is ( − )−n.

152

21.2.4.4 Option variables

taylordepth default value: 3 [option variable]

If in taylor (expr, x, a, p) the expression expr is of the form f(x)/g(x) and g(x) has no
terms up to degree p, taylor attempts to expand g(x) up to degree 2p. If there are
still no non-zero terms, taylor doubles the degree of the expansion of g(x) so long
as the degree of the expansion is less than or equal to 2tyordepthp.

153

Chapter 22

Differentiation

22.1 Differentiation operator diff

diff (f, 

, p
�

)
�

�

diff (f, 1, p1, . . . , n, pn) [function]

This is the general form of function diff, the differentiation operator. We will explain
the single-variable and the multi-variable forms separately.

As can be done with many other Maxima functions, diff can be applied collectively
to a list, vector or matrix. If f is a list, vector or matrix, differentiation will be carried
out for every individual component and the return value is a structure equivalent
to the structure of f.

22.1.1 Single-variable form

diff (f, x

, p
�

)

When applied to a function f 1 in one variabe, this form returns Dpƒ , the p-th deriva-
tive of f with respect to the variable x.2 If p is omitted, the first derivative is re-
turned.

When f is a multi-variable function, this form returns Dp

ƒ , the p-th partial derivative

of f with respect to the variable x. See section 22.1.2.1.

(%i1) diff(3*x^4*sin(x),x);
(%o1) 123 sin() + 34 cos()

22.1.1.1 Evaluating Dpƒ at a point

So far we have only computed Dpƒ . We might want to evaluate it at a point x,
i.e. compute the continuous linear map Dpƒ (), which in case of a single-variable
function is a number, to be multiplied with a given number v: Dpƒ ().

Continuing the above example we obtain with function at:

1Here we use the term function in the mathematical sense, not in the sense of MaximaL. In MaximaL
this would be called an expression.

2See sect. 22.5.4.2 for using a derivative noun form for x.

154

(%i2) at(%,x=%pi/2);

(%o2)
3π3

2

22.1.1.2 Implicit differentiation

Maxima properly differentiates implicitly, if diff is applied to the implicit equation
as a whole, where the dependent variable y is specified as a function of the inde-
pendent variable x, i.e. as y(x).

22.1.2 Multi-variable form

22.1.2.1 Partial derivatives

diff (f, 1, p1, . . . , n, pn)

This form returns the mixed partial derivative of function f according to the formula

∂p1+···+pn ƒ

∂
p1
1 . . . ∂

pn
n

where differention is carried out from right to left with respect to the variables listed
in the denominator, starting with variable n to the order of pn. Thus, the above
form is equivalent to the nested form diff (. . . (diff(ƒ , n, pn), . . .), 1, p1).

Note, however, that according to Schwarz’s theorem the order of taking multiple
partial derivatives does not matter, if all partial derivatives of f up to the desired
degree are continuous. This regularity of f can be assumed in most cases.

22.1.2.1.1 Hessian

hessian (f, [1, . . . , n]) [function]

Function hessian can be used to compute the (symmetric) Hessian matrix of the
second partial derivatives of function f with respect to the list of variables [1, . . . , n]
according to the scheme

Hƒ =











∂1∂1ƒ · · · ∂1∂nƒ
...

. . .
...

∂n∂1ƒ · · · ∂n∂nƒ











.

We give a rather abstract example using function depends to define dependencies
of the undeclared function f with respect to variables 1, 2, 3.

(%i1) depends (f,[x_1,x_2,x_3]);

(%o1) [ƒ (1, 2, 3)]
(%i2) hessian(f,[x_1,x_2,x_3]);

(%o2)











d2

d12
ƒ d2

d1d2
ƒ d2

d1d3
ƒ

d2

d1d2
ƒ d2

d22
ƒ d2

d2d3
ƒ

d2

d1d3
ƒ d2

d2d3
ƒ d2

d32
ƒ











155

22.1.2.2 Total derivative

Function diff cannot be used to compute total derivatives of multi-variable func-
tions. However, Maxima can compute the gradient and the Jacobian matrix with
other functions. Taylor expansions can be computed, even in the multi-variable
case, with function taylor.

22.1.2.2.1 Gradient

22.1.2.2.2 Jacobian

jacobian ([ƒnc1, . . . , ƒncn], [r1, . . . , rm]) [function]

Returns the jacobian (Funktionalmatrix) of the list of functions with respect to the
list of variables. Dependencies of undeclared functions can be declared with de-
clare.

Application example in ArensGM s.936-937 Bsp. zur Transformationsformel.wxm.

22.2 Evaluate expr at a point x with at

at (
�

epr
�

� [epr1, . . . , eprn]
�

,
�

 = 
�

� [1 = 1, . . . , n = n]
�

) [function]

expr or the expressions in the list are evaluated with its variables assuming the
values as specified in eqn or the list of equations. eqn has the form variable=value.
at carries out multiple substitutions in parallel. If atvalues have been defined pre-
viously, they are recognized. For an example see sect. 24.2.1.2.2.

22.3 Define value c of expr at a point x with atvalue

atvalue (epr,
�

 = 
�

� [1 = 1, . . . , n = n]
�

, c) [function]

In the single-variable case, atvalue assigns the value c to expr at the point x = a.
In the multi-variable case, the value c is assigned to expr at the point specified by
the corresponding list of equations. expr is a function evaluation, ƒ (1, ..., m), or a
derivative given in the form diff (ƒ (1, ..., m), 1, p1, ..., n, pm), where the function
arguments explicitly appear. p is the order of differentiation with respect to variable
. atvalue evaluates its arguments. atvalue returns c, which is called the atvalue.

The symbols @1, . . . ,@n represent the variables 1, . . . , n when atvalues are dis-
played.

(%i1) atvalue(f(x,y),[x=0,y=1],a^2);

(%o1) 2

(%i2) atvalue(’diff(f(x,y),x),x=0,1+y);

(%o2) @2 + 1

(%i3) at(’diff(f(x,y),x)=a,[x=0,y=1]);

(%o3) 2 = 

156

(%i4) at(’diff(f(x,y),x)=a,[x=1,y=1]);

(%o4)
d

d
f (,1)

�

�

�

�

=1
= 

Typically, initial values (IVP) or boundary values (BVP) for solving differential equa-
tions are established by this mechanism. For an example see sect. 24.2.2.

printprops (
�

ƒ
�

� [ƒ1, . . . , ƒn]
�

� 
�

, te) [function]

This function displays the atvalues of either function f, the functions defined in the
list, or all functions which have atvalues defined by function atvalue.

22.4 Evaluation flag diff

diff [option variable]

When diff is present as an evflag in a call to ev, all differentiations indicated in the
expression are carried out. For an example see sect. 24.2.1.2.2.

22.5 Noun form differentiation and calculus

We call differentiation of variables or MaximaL functions, for which only functional
dependencies are known, noun form differentiation. Normal symbolic differentia-
tion and noun form differentiation can be combined in the same function call of
diff.

If MaximaL functions are used to represent mathematical functions, see below,
noun form integration can be accomplished, too. We then generally speak of noun
form calculus.

22.5.1 Two ways to represent mathematical functions

In Maxima, mathematical functions and functional dependencies can be repre-
sented in two fundamentally different ways. As an example comparing both meth-
ods see "Auf Schiene beweglich schwingende Hantel.wxm".

22.5.1.1 Variables and depends

In the first way, MaximaL variables, which may be either unbound or bound (with
the : operator) to a specific expression being the value of this variable, are used
to represent mathematical functions, and their dependencies on other variables
(which themselves can have dependencies, therefore representing mathematical
functions) are explicitly declared with depends. When using these variables, their
functional dependencies are not immediately visible to the user, since they are not
following the variable name in parentheses like they do in the other way described
below, when MaximaL functions are used instead. Declared dependencies of vari-
ables can only be made visible by using system variable dependencies.

157

This way to implement mathematical functional dependencies in MaximaL is often
easier, mathematical expressions are visually shorter and clearer. However, depen-
dencies established with depends are recognized only by diff , not by integrate or
other MaximaL functions.

22.5.1.2 MaximaL functions

In the second way, MaximaL functions are used to represent mathematical func-
tions. These MaximaL functions can be either undeclared or declared (with the :=
operator) to be a specific expression (here we don’t speak of the value of a function,
but of its definition). Dependencies of the functions are now established implicitly
by their arguments, which have to be provided both in the function definition and
in the function call.

Note that one and the same symbol can be used in parallel both as a variable and a
function; it can have a double life. This is possible because MaximaL functions are
implemented as properties, not as values. The user’s possibility to make deliberate
use of this double life certainly is one of Maxima’s highlights.

This way to represent mathematical functions and functional dependencies is gen-
erally preferable. It enables the user to easily use noun form differentiation and
noun form (indefinite or definite) integration, thus freely employing the fundamen-
tal theorem of calculus.

The drawback of this method is its more complicated handling. For instance, if (part
of) the return value of some computation is to become the function block of a new
function, this has to be done according to the following example

(%i1) solve(x(t)^2+y(t)^2=a^2,x(t));

(%o1) [(t) = −
Ç

2 − y(t)2, (t) =
Ç

2 − y(t)2]

(%i2) rhs(%[2])$ /* An extra line is necessary here. */
(%i3) x(t):=’’%; /* Quote-quote operator needed for evaluation. */

(%o3) (t) :=
Ç

2 − y(t)2

Furthermore, careful attention has to be paid for symbols that need to be quoted in
the function block, e.g. the second parameter in functions diff or integrate.

22.5.2 Functional dependency with depends

depends (
�

y1
�

� [y1, . . . , y1k]
�

,
�

1
�

� [1, . . . , 1m]
�

, . . . , yn, n)
�

� [function]
dependencies (y1(1, . . . , 1k), . . . , yn(n)) [function]

System function depends declares functional dependencies among variables for
the purpose of computing derivatives. A variable y can be declared to depend on
variable x. Although this functional dependency is returned by depends as y(),
y is not an undeclared function, but remains a variable. If a function y(x) has
been defined (or even if it is an undeclared function), depends does not refer to
the function y(x), but the variable y (variable and function of the same name can
coexist).

158

In the absence of a dependency declared with depends, diff (y, x) yields zero. If
depends (y, x) has been performed, diff (y, x) yields a symbolic derivative, that is,
a noun form.

The arguments to function depends are pairs consisting of a variable y and a vari-
able x on which y shall depend. Any of these elements can be a list (of functions
or variables respectively). depends (y, x) declares f to depend on x. When using
a list for the arguments, either several functions can be declared to depend on a
common variable, or a function can be declared to depend on multiple variables, or
these features are even combined.

dependencies (y1(1, . . . , k), y2(z))) is equivalent to depends (y1, [1, . . . , k], y2, z).

depends evaluates its arguments and returns a list of the dependencies established.
The dependencies are appended to the global variable dependencies.

depends (y, x) returns an error, if y is bound. However, y can be bound after
depends (y, x) has been executed. Alternatively, a bound variable y can be declared
to depend on x by using a noun form of y: depends (’y,x).

diff is the only MaximaL system function which recognizes functional dependencies
established with depends; integrate or other functions don’t recognize dependen-
cies established for variables. diff uses the chain rule when it encounters indirect
functional dependencies. Note that in the last line the differentiation is not carried
out, because here x is not regarded as a variable, although it has been evaluated
as such, but as an undeclared function.

(%i1) depends([x,y,r,θ],t);
(%o1) [x(t),y(t),r(t),θ(t)]
(%i2) x:r*cos(θ)$
(%i3) y:r*sin(θ)$
(%i4) diff(x,t);

(%o4)

�

d

dt
r

�

cos (θ) − r sin (θ)
�

d

dt
θ

�

(%i5) diff(y,t);

(%o5) r cos (θ)
�

d

dt
θ

�

+
�

d

dt
r

�

sin (θ)

(%i6) diff(x(t),t);

(%o6)
d

dt
(r cos (θ)) (t)

dependencies [system variable]

The system variable dependencies contains the list of symbols which have func-
tional dependencies assigned by depends, the function dependencies, or gradef.
The dependencies list is cumulative: each call to depends, function dependencies,
or gradef (of a variable) appends additional items. The default value of dependen-
cies is [].

remove (f, dependency) [function]

Removes all dependencies declared for f.

Killing a symbol removes it and its dependencies.

159

22.5.3 Using MaximaL functions

22.5.3.1 Distinction between function and variable

A variable f which has been declared a functional dependency with depends re-
mains, although this dependency is returned by Maxima as f(x), a variable and is
not an undeclared function f(x). A MaximaL function is denoted as a symbol fol-
lowed by its arguments in parentheses, both in the function definition and in the
function call. Whether declared or not, a function is treated in a completely differ-
ent way by Maxima than a variable. In fact, a symbol f can mean a variable f and
a function f(x) at the same time, the variable being bound or not, and the function
being defined or undefined.

22.5.3.2 Declared function

A function definition alone, section 31.2, like f(x):=3*x does not yet create a math-
ematical functional dependency f(x). In the function definition, x is just a formal
parameter, which could be replaced by any other. The actual functional depen-
dency is only established by the function call f(x). For instance, diff (f(x), x) returns
3, because f(x) evaluates to 3*x. diff (f(y), y) also returns 3, because f(y) evaluates
to 3*y. But diff (f(y), x) returns zero. diff (f, x) also returns zero, because f refers to
the variable f (which here we assume unbound), not the defined function f(x).

22.5.3.3 Undeclared function

An undeclared function, as the name implies, is not defined. The call f(x) of an
undeclared function, however, establishes a functional dependency which is rec-
ognized by diff and any other MaximaL function, e.g. integrate. In this case, diff
always returns a noun form; the Leibniz quotient is never evaluated. However, it
may be simplified.

(%i1) diff(f(t),t);

(%o1)
d

dt
f(t)

(%i1) diff(a*f(t),t,2)$ Pr()$

(%o1)
d2

dt2
( f(t)) = 

�

d2

dt2
f(t)

�

Undeclared functions can be used in an expression assigned to a variable or used
in a function definition. If this variable or function is differentiated, diff recognizes
the indirect functional dependencies and uses the chain rule, see example in the
following section.

22.5.3.4 Function call as the independent variable in diff

In a call of diff we can even use a function call as the variable with respect to which
is to be differentiated.

(%i1) g(x):=f(x)^2$
(%i2) diff(g(x),x);

160

(%o2) 2 f()
�

d

d
f()

�

(%i3) diff(g(x),f(x));

(%o3) 2 f()

If this function has been declared, it has to be quoted in case it shall not be eval-
uated immediately. For quoting function calls see sect. 31.2.2.1. The following
example illustrates the chain rule.

(%i4) f(x):=3*x$
(%i5) g(x):=x^2$
(%i6) diff(g(f(x)),x);

(%o6) 18

(%i7) diff(g(’f(x)),’f(x)) * diff(f(x),x);

(%o7) 6 f()

(%i8) ev(%, nouns);

(%o8) 18

22.5.4 Using derivative noun forms in diff

Derivative noun forms can be used in diff both in the expression to be differentiated
and as the variable with respect to which is to be differentiated.

22.5.4.1 Differentiating derivative noun forms

Derivative noun forms can themselves be differentiated, that is, they can appear in
the expression to be differentiated. Both the derivative noun form used in the ex-
pression and the outer function call of diff have to be quoted, unless its respective
dependencies have been declared with depends.

(%i1) ’diff(’diff(r,t),s);

(%o1)
d2

dsdt
r

22.5.4.2 Differentiation with respect to derivative noun form

We can use diff to differentiate an expression with respect to a derivative noun
form. The derivative noun form has to be quoted, unless its respective dependency
has been declared with depends.

(%i1) T: (m*r^2*(’diff(θ,t,1))^2+m*(’diff(r,t,1))^2)/2

(%o1)
mr2

�

d
dtθ

�2
+m

�

d
dt r

�2

2
(%i2) diff(T,’diff(r,t));

(%o2) m

�

d

dt
r

�

161

22.5.5 Quoting and evaluating noun calculus forms

In general, when using noun calculus forms, special attention has to be paid to
whether these noun forms or their arguments, e.g. the second parameter in func-
tions diff or integrate, are quoted or not, or whether they need to be quoted or
not.

Noun calculus forms returned by Maxima are always quoted. If they are to be
evaluated or simplified, nouns has to be added as an argument to ev.

(%i1) eq1:l*(diff(q(t),t,2))+g*q(t)+(diff(x_1(t),t,2))=0;

(%o1) 

�

d2

dt2
q(t)

�

+
d2

dt2
1(t) + gq(t) = 0

(%i2) x_1(t):=-(l*m_2*q(t))/(m_2+m_1);

(%o2) 1(t) :=
−m2q(t)

m2 +m1

(%i3) ev(eq1);

(%o3)
d2

dt2

�

−
m2q(t)

m2 +m1

�

+ 

�

d2

dt2
q(t)

�

+ gq(t) = 0

(%i4) ev(eq1,nouns);

(%o4) −
m2

�

d2

dt2
q(t)

�

m2 +m1
+ 

�

d2

dt2
q(t)

�

+ gq(t) = 0

22.6 Defining (partial) derivatives with gradef

gradef (ƒ (1, . . . , n), g1, . . . , gn))
�

�

gradef (, , g) [function]

Defines the partial derivatives (i.e., the components of the gradient) of function f or
variable v. Such definitions are needed when a function is not known explicitly but
its first derivatives are and, for example, we want to have Maxima apply the chain
rule or obtain higher order derivatives.

The first form defines dƒ /d as g, where g is an expression; g may be a function
call, but not the name of a function (this means: the function has to be given with
arguments). The number of partial derivatives m may be less than the number of
arguments n, in which case derivatives are defined with respect to 1 through m
only.

Partial derivatives cannot be defined for a function already defined, and the defini-
tion of a function for which a derivative is already defined with gradef overwrites
this definition of the derivative. However, partial derivatives can be defined for the
noun form of a function already defined, see example. A derivative can be defined
for a variable which is bound, see example. Trying to define a derivative of the noun
form of a variable (whether bound or not) causes an error.

The second form defines the derivative of variable v with respect to variable x as
expr. This also establishes the dependency of v on x as depends(v, x). The variable
may already be bound.

162

The first argument ƒ (1, . . . , n) or v is quoted, but the remaining arguments g1, . . . , gm
or , g are evaluated. gradef returns the function or variable for which the partial
derivatives are defined.

gradef can define gradients for only one function or one variable at a time.

gradef can redefine the derivatives of Maxima’s built-in functions.

gradef cannot define partial derivatives for a subscripted function.

In the following example we use gradef to make Maxima apply the chain rule when
differentiating the undeclared function g(x,y) with respect to x.

(%i1) diff(g(3*x-2*y),x);

(%o1)
d

d
g (3 − 2y)

(%i2) gradef(g(z),G(z));
(%o2) g(z)
(%i3) diff(g(3*x-2*y),x);
(%o1) 3*G(3*x-2*y)

gradef cannot define partial derivatives for a function already defined. (Defining the
derivatives before defining the function does not help, because the latter overwrites
the derivatives defined by gradef.) However, partial derivatives can be defind for
a noun form of a function already defined. In this case, the defined function and
its noun form will behave differently under diff, the noun form not resulting in the
usual symbolic Leibniz notation, but in the expression defined by gradef.

(%i1) f(x):=x^2;

(%o1) f() := 2

(%i2) diff(f(x),x);
(%o2) 2x
(%i3) diff(f(log(x)),x);

(%o3)
2 log ()



(%i4) gradef(f(x),y(x)); /* This returns no error but has no effect. */
(%o4) f(x)
(%i5) diff(f(x),x);
(%o5) 2x
(%i6) diff(’f(x),x);

(%o6)
d

d
f()

(%i7) gradef(’f(x),y(x));
(%o7) f(x)
(%i8) diff(’f(x),x); /* The result differs from (%o2) and (%o6). */
(%o8) y(x)
(%i9) diff(’f(log(x)),x);

(%o9)
y (log ())



(%i10) ev(diff(’f(log(x)),x),f);

163

(%o10)
2 log ()



(%i11) ev(diff(’f(log(x)),x),nouns);

(%o11)
2 log ()



In case of a variable, however, gradef can be defined for a bound variable. Then,
again, the bound variable and its noun form will behave differently under diff.

(%i1) depends ([r,v,e_r,e_v],t)$
(%i2) r_: r*e_r$
(%i3) gradef(r_,t,e_v*r*(diff(v,t,1))+e_r*(diff(r,t,1)))$
(%i4) diff(r_,t);

(%o4) e_r
�

d

dt
r

�

+
�

d

dt
e_r

�

r

(%i5) diff(’r_,t);

(%o5) e_ r
�

d

dt


�

+ e_r
�

d

dt
r

�

22.6.1 Show existing definitions

printprops ([ƒ1, . . . , ƒn], ,gradef)
�

�

printprops ([1, . . . , n], atomgrad) [function]

The first form displays the partial derivatives of the functions ƒ1, . . . , ƒn as defined by
gradef. The second form displays the partial derivatives of the variables 1, . . . , n
as defined by gradef.

gradefs [system variable]

gradefs is the list of the functions for which partial derivatives have been defined
with gradef. This list does not include any variables for which partial derivatives
have been defined with gradef.

22.6.2 Remove definitions

remove (f, [dependency,gradef])
�

�

remove (v, [dependency,atomgrad]) [function]

The first form removes the definition of function f, the second one removes the
definition of variable v.

kill (gradefs) [function]

Removes all entries from the list of the system variable gradefs, i.e. removes all
gradef definitions present.

164

22.7 Gradient

Grad (f, n ,
�

[1, . . . , n]
�

� 
�

) [function of cartesian_coordinates]

Computes the gradient of the n-dim. scalar field f. The last parameter gives a list
of the variable names or a singe variable name, if the variables of f are elements of
an undeclared array of that name. Grad returns an n-dim column vector.

165

Chapter 23

Integration

integrate(1/x,x); => log(x)
integrate(1/x,x), logabs; => log(|x|)

166

Chapter 24

Differential Equations

24.1 Introduction

24.1.1 Overview

Only a small portion of the ODEs encounterd in research and engineering have
known exact solutions and can be solved by analytical methods. Even if they can,
sometimes their solutions involve complicated expressions with special functions
and are of no real help. In this case, the user might prefer to look for an approximate
numerical solution instead.

Maxima cannot solve PDEs.

24.1.1.1 Analytical methods

Maxima provides function ode2 to analytically find the general solution of elemen-
tary (not necessarily linear) ODEs of first or second order. On the basis of this
solution, the initial value problem can be solved by ic1 or ic2, depending on the
order of the ODE. Function bc2 solves the boundary value problem.

In addition, David Billinghurst has developed a new package contrib_ode which
employs some more methods for solving first order ODEs and linear homogeneous
second order ODEs.

A linear ODE of order n or a system of such ODEs can be solved by desolve which
uses Laplace transformation.

Maxima cannot solve nonlinear ODEs of higher order by analytical means. Note
that any (system of) higher order ODE(s) can be transformed into a system of first
order ODEs. If this resulting system is linear, it can possibly be solved with desolve.

167

24.1.1.2 Numerical methods

24.1.1.3 Graphical methods

24.2 Analytical solution

24.2.1 Ordinary differential equation (ODE) of 1. or 2. order

24.2.1.1 Find general solution

24.2.1.1.1 ode2

ode2 (eq, depvar(indepvar), indepvar) [function]

Solves an ordinary differential equation (ODE) of first or second order. ode2 takes
three arguments: the ODE (not necessarily in explicit form) given by eq, the depen-
dent variable depvar, and the independent variable indepvar. Note that indepvar
has to be specified as the argument of depvar again. When successful, ode2 re-
turns either an explicit or implicit solution for the dependent variable. %c is used
to represent the integration constant in the case of first-order equations, %k1 and
%k2 are the constants for second-order equations.

Derivatives have to be specified in eq without quoting function diff. The depen-
dence of the dependent variable and its derivative(s) on the independent variable
always has to be indicated in eq, as in the case of function desolve. E.g. in eq the
dependent variable is written as y(x) and not as y, and its derivative is written as
diff(y(x),x) and not as diff(y,x).

If ode2 cannot obtain a solution for whatever reason, it returns false, after perhaps
printing out an error message.

The methods implemented for first order ODEs, in the order in which they are
tested, are: linear, separable, exact (perhaps requiring an integrating factor), ho-
mogeneous, Bernoulli’s equation, and a generalized homogeneous method.

The types of second-order ODEs which can be solved are: constant coefficients, ex-
act, linear homogeneous with non-constant coefficients which can be transformed
to constant coefficients, the Euler or equi-dimensional equation, equations solvable
by the method of variation of parameters, and equations which are free of either
the independent or of the dependent variable so that they can be reduced to two
first order linear equations to be solved sequentially.

In the course of solving ODE’s, several variables are set purely for informational pur-
poses: method denotes the method of solution used (e.g., linear), intfactor denotes
any integrating factor used, odeindex denotes the index for Bernoulli’s method or
for the generalized homogeneous method, and yp denotes the particular solution
for the variation of parameters technique.

Note that Maxima does not take into consideration the domain of the independent
variable, or whether it is simply connected. Neither does Maxima return the precise
domain of a solution or any singularities. All his has to be worked out manually, if
necessary.

As an example, we wish to solve the following ODE describing a free harmonic

168

oscillator without damp, Satz 5.10, given by

d2φ

dt2
+
g


φ(t) = 0 (24.1)

under the assumptions that g,  > 0. We will continue this example for an IWP to
be solved by ic2, and later we will solve equation and IWP again with the help of
desolve to show the differences.

(%i1) assume(g>0,l>0)$
(%i2) eq:diff(φ(t),t,2)+g/l*φ(t);

(%o2)
d2

dt2
φ(t) +

g


φ(t)

(%i3) gensol: ode2(eq,φ(t),t),rootscontract;

(%o3) φ(t) =%k1 sin

�√

√g


t

�

+%k2 cos

�√

√g


t

�

Note that one side of the equation can be omitted, because it is zero, see sect. 9.5.
Note also that the solution returned by ode2 is not an assignment, it does not bind
the variable φ. The constants %k1, %k2 inserted by Maxima can be specified by
solving an initial value problem, see function ic2, or a boundary value problem, see
function bc2.

24.2.1.1.2 contrib_ode

contrib_ode (eq, depvar, indepvar) [function of contrib_ode]

This function makes uses of more methods than ode2 for solving linear and non-
linear first order ODEs as well as linear homogeneous second order ODEs.

load(’contrib_ode)

24.2.1.2 Solve initial value problem (IVP)

24.2.1.2.1 1. order ODE: ic1

ic1 (gensol,  = 0, y = y0) [function]

Solves an initial value problem (IVP) for a first order ordinary differential equation.
The first argument gensol is a general solution of the ODE as returned by ode2.
The second argument specified the name and initial value of the independent vari-
able.1The last argument gives the name and the initial value of the dependent
variable, where y0 = y(0).

24.2.1.2.2 2. order ODE: ic2

ic2 (gensol,  = 0, y = y0, ′dƒ ƒ (y, ) = y1) [function]

Solves an initial value problem for a second order ordinary differential equation. The
first argument gensol is a general solution of the ODE as found by ode2. The second
argument specifies the name and initial value of the independent variable.1 Then

1The value of 0 does not have to be zero. Any point in the domain of y can be selected.

169

follows the name and the initial value of the dependent variable, where y0 = y(0).
The last argument gives the initial value of the first derivative of the dependent
variable with respect to the independent variable, evaluated at 0.2

As an example, we want to solve the IVP for the general solution of the oscillator
equation found in the example to function ode2, first with initial values t = 0, φ(t) =
1, φ(t)′ = 0, then with t = 0, φ(t) = 1, φ(t)′ = 1.

(%i4) ivpsol: ic2(gensol,t=0,φ=1,’diff(φ,t)=0),rootscontract;

(%o4) φ = cos

�√

√g


t

�

(%i5) ivpsol: ic2(gensol,t=0,φ=1,’diff(φ,t)=1),rootscontract;

(%o5) φ =

√

√

√



g
sin

�√

√g


t

�

+ cos

�√

√g


t

�

As with any result obtained for a differential equation, it should be checked to see
whether it is really a solution. We show this for the second case. First we proof that
it satisfies the conditions given to ic2. In order to avoid error messages, we use at
rather than ev for the derivative.

(%i6) ivpsol,t=0;
(%o6) φ=1
(%i7) at(diff(rhs(ivpsol),t),t=0),ratsimp;
(%o7) 1

Then we insert the result in our equation eq. The following input is equivalent to
ev(eq, ivpsol, diff, ratsimp) and causes rhs(ivpsol) to be substituted for φ in eq, then
the differentiations to be carried out and finally a simplification. Note that diff here
is not the function but an evaluation flag.

(%i8) eq,ivpsol,diff,ratsimp;
(%o8) 0

The result is the missing rhs of eq. Therefore, ivpsol is a valid solution of eq. Since
the solution of the IVP is unique, it is the only solution.

Finally we want to solve the IVP at points other than zero. This time, first we select
t = π/(2∗sqrt(g/ )), φ(t) = 1, φ(t)′ = 0, then t = π/(3∗sqrt(g/ )), φ(t) = 1, φ(t)′ =
0. We see that this works just as well.

(%i9) ic2(gensol,t=π/(2*sqrt(g/l)),φ=1,’diff(φ,t)=0),rootscontract;

(%o9) φ = sin

�√

√g


t

�

(%i10) ic2(gensol,t=π/(3*sqrt(g/l)),φ=1,’diff(φ,t)=0)$
(%i11) PullFactorOut([%,2,1],sqrt(3)/2)$
(%i12) PullFactorOut([%,2,2],1/2),rootscontract;

2Although quoting diff is not absolutely necessary, it is recommended, because sometimes this will
prevent unexpected errors from occurring.

170

(%o12) φ =

�p
3

2

�

sin

�√

√g


t

�

+
�

1

2

�

cos

�√

√g


t

�

The result can be checked in the same way as we demonstrated above.

In sect. 24.2.2 we will demonstrate this same example using function desolve, and
in sect. 27.1.2 we redo it with laplace.

We see that the oscillation function φ returned can be a cos or a sin, but generally is
a combination of both, with an angular frequency being identical for the sin and the
cos, and factors depending on the specific IVP. In sect. 14.3.1 we will continue this
example using pattern matching to transform the oscillation function as returned
by ic2 into the form

φ = A sin(ωt + α)

with the amplitude A, the angular frequency ω and the phase shift α.

24.2.1.3 Solve boundary value problem (BVP): bc2

For a first order ODE, the boundary value problem (BVP) is equivalent to the initial
value problem.

bc2 (gensol, ival1, depval1, ival2, depval2) [function]

Solves a boundary value problem for a second order differential equation. The
first argument gensol is a general solution to the equation as found by ode2; ival1
specifies the value of the independent variable in a first point, in the form  = 1,
and depval1 gives the value of the dependent variable in that point, in the form
y = y1. The expressions ival2 and depval2 give the values for these variables at a
second point, using the same form.

24.2.2 System of linear ODEs: desolve

desolve (eq, y())
�

� [function]
desolve ([eq1, . . . , eqm],[y1(), . . . , ym()])

Solves one or a system of linear ordinary differential equations of order n using
Laplace transform. The first argument gives one or a list of differential equations
being in the dependent variables y or y1, . . . , ym, each of them depending on the
independent variable x. Derivatives are given in the equation by quoting function
diff. The independent variable is not given explicitely as a third argument, as in
the case of function ode2, but instead, the functional dependence of the dependent
variable(s) and its derivative(s) on the independent variable must be indicated both
in the equations and in desolve’s second argument. E.g. the dependent variable is
written as y(x) and not as y, and its derivative is written as ’diff(y(x),x) and not as
’diff(y,x). If desolve cannot obtain a solution, it returns false.

desolve returns a general solution specifying integration constants in terms of sym-
bolic initial values of the dependent variables and their derivatives at t=0, with t
being the independent variable. If an initial or boundary value problem is to be
solved, these values can be defined with atvalue prior to calling desolve. Note that

171

because desolve uses Laplace transform, this is only possible for initial or bound-
ary conditions specified at t=0, with t being the independent variable. If one has
initial or boundary conditions imposed elsewhere, one can impose these on the
general solution returned by desolve and eliminate the constants by solving the
general solution for them and substituting their values back. Let’s demonstrate all
this with the same example we used for ode2 and ic2. First we use initial values
t = 0, φ(t) = 1, φ(t)′ = 1.

(%i1) assume(g>0,l>0)$
(%i2) eq: ’diff(φ(t),t,2)+g/l*φ(t);

(%o2)
d2

dt2
φ(t) +

gφ(t)



(%i3) gensol: desolve(eq,φ(t)),expand,rootscontract;

(%o3) φ(t) =

√

√

√



g
sin

�√

√g


t

�

�

d

dt
φ(t)

�

�

�

�

t=0

�

+ φ(0) cos

�√

√g


t

�

(%i4) atvalue(φ(t),t=03,1)$ atvalue(’diff(φ(t),t),t=03,1)$
(%i5) desolve(eq,φ(t)),expand,rootscontract;

(%o5) φ(t) =

√

√

√



g
sin

�√

√g


t

�

+ cos

�√

√g


t

�

The result can be checked in the same way as it was demonstrated for ic2.

Now we will show how an IVP with initial values at a point other than zero can be
solved, selecting t = π/(3 ∗ sqrt(g/ )), φ(t) = 1, φ(t)′ = 0, like in the example
of ic2. Suppose that in the above example we have come untill (%o3), which is
the general solution, but with two unknown variables φ(0) and φ′(0). We proceed
as follows: First we specify our atvalues φ(t) and φ′(t). With the first of them
we go into gensol, evaluated at t. Then we differentiate gensol and go into the
result, evaluated at t again, with φ′(t). This provides us two equations for the two
unknown variables, which we can now solve and substitute back into the general
solution. For this last step we use subst; at doesn’t work properly in this case, since
one of the variables is itself a noun at form. Note also, that we can’t use ev instead
of at for the evaluations of gensol and dgensol at t, also due to the noun at form.
In an expression like gensol, t=π/(3*sqrt(g/l)); the rhs of the equation would be
substituted for t everywhere in gensol, including in the noun at form. This destroys
it and makes it evaluate to zero, giving an incorrect overall result. Here we see
that the three seemingly equivalent methods of evaluation at a point (ev, at, subst)
have subtle differences that want to be considered carefully.

(%i4) atvalue(φ(t),t=t=π/(3*sqrt(g/l)),1)$
(%i5) atvalue(’diff(φ(t),t),t=t=π/(3*sqrt(g/l)),0)$
(%i6) at(gensol,t=π/(3*sqrt(g/l))),ratsimp$ expand(%)$
(%i7) PullFactorOut([%,2,1],sqrt(3)/2*sqrt(l/g))$
(%i8) at1sol: PullFactorOut([%,2,2],1/2);

(%o8) 1 =

 p
3
p


2
p
g

!

�

d

dt
φ(t)

�

�

�

�

t=0

�

+ φ(0)
�

1

2

�

3The value of t here has to be zero, because desolve uses Laplace transform.

172

(%i9) dgensol:diff(gensol,t);

(%o9)
d

dt
φ(t) =

√

√g



√

√

√



g
cos

�√

√g


t

�

�

d

dt
φ(t)

�

�

�

�

t=0

�

− φ(0)
√

√g


sin

�√

√g


t

�

(%i10) at(dgensol,t=π/(3*sqrt(g/l))),ratsimp$
(%i11) at2sol:2*sqrt(l)*%;

(%o11) 0 =
p



�

d

dt
φ(t)

�

�

�

�

t=0

�

−
p

3φ(0)
p

g

(%i12) linsolve([rembox(at1sol),at2sol],[φ(0),at(’diff(φ(t),t,1),t=0)]);

(%o12) [φ(0) =
1

2
,
d

dt
φ(t)

�

�

�

�

t=0
=

p
3
p
g

2
p

]

(%i13) subst((sqrt(3)*sqrt(g))/(2*sqrt(l)),at(’diff(φ(t),t,1),t=0),gensol)$
(%i14) subst(1/2,φ(0),%),ratsimp$ expand(%)$
(%i15) PullFactorOut([%,2,1],sqrt(3)/2)$
(%i16) PullFactorOut([%,2,2],1/2),rootscontract;

(%o16) φ(t) =

�p
3

2

�

sin

�√

√g


t

�

+
�

1

2

�

cos

�√

√g


t

�

In sect. 27.1.2 we solve the same ODE explicitely with laplace, thus demonstrating
what desolve does internally.

24.3 Numerical solution

24.3.1 Runge-Kutta: rk

Package dynamics contains function rk for numerically solving a (system of) 1. or-
der ODE(s) given in explicit form with the classical forth order Runge-Kutta method.
This package is loaded automatically when a Maxima session begins.

rk (
�

eq
�

� [eq1, . . . , eqn]
�

,
�

y
�

� [y1, . . . , yn]
�

,
�

y0
�

� [y01, . . . , y0n]
�

, [, 0, e, nc])
[function]

Numerically solves an initial value problem (IVP) of either a single or a system of
1. order ODE(s) given in explicit form by eq or the list [eq1, . . . , eqn], with the de-
pendent variable(s) being y or [y1, . . . , yn] and having initial value(s) y0 = y(0) or
[y01, . . . , y0n]. The independent variable x is evaluated in the interval [0, e] with
constant increment inc. Any of the dependent variables yk, k = 1, . . . , n, can appear
in any of the equations eqk. The return value of rk can be plotted immediately with
plot2d.

As an example we want to solve the ODE

dy

d
=  − y2

in the range of  ∈ [0,8] with a constant increment of 0.1 for an initial value of
y0 = y(0) = y(0) = 1.

(%i1) rk(t-x^2,x,1,[t,0,8,0.1])$
(%i2) plot2d ([discrete, %])$

173

Figure 24.1 shows the resulting plot. In the next example we solve the system

dy1

d
= 4 − y21 − 4y

2
2 and

dy2

d
= y22 − y

2
1 + 1

in the range of  ∈ [0,4] with a constant increment of 0.02 for initial values of
y01 = −1.25, y02 = 0.75 at x=0.

Figure 24.1 – Plot of
the return value of
function rk having
solved one first-order
ODE with the Runge-
Kutta method.

(%i1) res: rk([4-y1^2-4*y2^2,y2^2-y1^2+1],[y1,y2],[-1.25,0.75],[x
,0,4,0.02])$

(%i2) plot2d ([[discrete, makelist([p[1],p[2]],p,res)],[discrete,
makelist([p[1],p[3]],p,res)]],[legend,"y_1","y_2"])$

Figure 24.2 shows the resulting plot.

Figure 24.2 – Plot of
the return value of
function rk having
solved a system of
two first-order ODEs
with the Runge-Kutta
method.

174

24.4 Graphical estimate

24.4.1 Direction field

Direction fields can be plotted either with function plotdf, which uses xMaxima, or
with function drawdf, which uses Gnuplot’s draw.

24.4.1.1 plotdf

plotdf is a function to plot the direction field of one or two first-order ODEs, possibly
together with the specific solution of an initial value problem (IVP). plotdf uses
xMaxima and depends on it being installed; but it can be used also from other
interfaces, e.g. wxMaxima or the console. plotdf can export plots only in postscript
format (.ps). External programs can be used to transform such files into .jpg or .png
format; we use the downloadable freeware XnConvert.

plotdf (
�

eq
�

� [eq1, eq2]
�

, [, y]
�

, [opt1], . . . , [optn]
�

) [function]

Creates a plot of the direction field of either one first-order ODE or a system of two
of them, given in explicit form. In the first case, eq is the right-hand side of the ODE

y′() = F(, y),

while in the second case, the list [eq1, eq2] contains the right-hand sides of the
ODEs

′(t) = F1(t, ) and y′(t) = F1(t, y).

In the first case, the second argument provides the names of the independent and
the dependent variable; in the second case, it provides the two dependent vari-
ables, the independent variable always being t. The second argument can be omit-
ted in either case, if the names are "x" and "y".

The following options, each of them enclosed in a list and separated by commas,
can be used:

[trajectory_at,0, y0]: Initial value problem (IVP) with initial values 0, y0.

As a first example, we plot the direction field of the first-order ODE

y′() = e−y

together with an IVP given by 0 = 2, y0 = y(0) = −0.1.

(%i1) rk(t-x^2,x,1,[t,0,8,0.1])$
(%i2) plot2d ([discrete, %])$

Figure 24.3 shows the resulting plot.

24.4.1.2 drawdf

175

Figure 24.3 – Plot of the direction field of a first-
order ODE together with an IVP.

176

Part V

Special applications

177

Chapter 25

Analytic geometry

25.1 Representation and transformation of angles

25.1.1 Bring angle into range

RadRange0to2(angle) [function of rs_angles]
RadRange1to1(angle) [function of rs_angles]
DegRange0to2(angle) [function of rs_angles]
DegRange1to1(angle) [function of rs_angles]

These functions bring an angle given in radiant into either the range [0,2π) or
(−π, π], and an angle given in degrees into either the range [0,360) or (−180,180].

25.1.2 Degrees � radians

Deg2Rad(degrees, 〈, n〈, ƒ 〉〉) [function of rs_angles]
Rad2Deg(radians, 〈, n〉) [function of rs_angles]

These functions transform an angle from degrees (decimal) to radians and vice
versa.

Deg2Rad transforms an angle given in decimal degrees to radians. The result is
a term consisting of pi and a factor. float(Deg2Rad(degrees)) returns a float. If a
second argument n>0 is present, the factor of pi is rounded to n digits after the
dot. If any third argument is present, Deg2Rad will return a float rounded to n digits
after the dot.

Rad2Deg transforms an angle given in radians to decimal degrees. If a second
argument n ≥ 0 is present, in case of n=0 the result is rounded to integer, and in
case of n>0 the float result is rounded to n digits after the dot. Note that a float
result with maximum precision can be obtained by float(Rad2Deg(radians, 〈, n〉)).

25.1.3 Degrees decimal � min/sec

Dec2Min(degrees 〈, n〉) [function of rs_angles]
Min2Dec([deg,min,sec] 〈, n〉) [function of rs_angles]
ConcMinSec([deg,min,sec]) [function of rs_angles]

178

Dec2Min converts an angle given in decimal degrees into a list of 3 elements con-
taining degrees, minutes and seconds. The first two elements are integers. If a
second argument n ≥ 0 is present, seconds are rounded to n digits after the dot.

Min2Dec converts an angle given as a list of 3 elements containing degrees, min-
utes and seconds into decimal degrees. If a second argument n ≥ 0 is present, the
value returned is rounded to n digits after the dot.

ConcMinSec converts an angle given as a list of 3 elements containing degrees,
minutes, and seconds into a string with the elements followed by °, ’ and ” respec-
tively.

179

Chapter 26

Coordinate systems and
transformations

26.1 Cartesian coordinates

26.1.1 Extended coordinates

Leng (
�

ector
�

� sqremtr
�

,

1
�

�0
�

) [function of rs_object_transformation]
Short (

�

ector
�

� sqremtr
�

) [function of rs_object_transformation]

Function Leng transforms a column vector or square matrix of dimension 2 or 3 to
extended coordinates. If the first argument is a column vector, add a new com-
ponent at the end containing 1 for a location vector and 0 for a direction vector,
depending on the optional second argument (1 or 0). If the second argument is
omitted, use 1, since a location vector is assumed. A column vector is returned.
In case of a square matrix, 0 is appended to any column and row, only the last
element of the matrix is set to 1.

The inverse function Short transforms a column vector or square matrix of dimen-
sion 2 or 3 being in extended coordinates (dimension 3 or 4) back to the non-
extended format.

26.1.2 Object transformation

26.1.2.1 Rotation

RotMatrix (
�

2D
�

� s
�

, phi,

etend
�

) [function of rs_object_transformation]

Returns the rotation matrix (in extended coordinates, if 3. argument is present, e.g.
as e) for an active (object) rotation in 2D, if first argument is 2, else in 3D around
axis x, y, or z, with rotation angle phi (given in rad) in the mathematically positive
direction (counterclockwise). By giving a negative angle −phi, the transformation
matrix for a passive (coordinate) rotation in the mathematically positive direction
(counterclockwise) by angle phi can be created.

180

26.2 Polar coordinates

26.3 Cylindrical coordinates

Figure 26.1 – Diagram
of representations
and transformation
functions for cylin-
drical coordinates
from package cylindri-
cal_coordinates.mac.

26.4 Spherical coordinates

26.5 General orthogonal coordinates

181

Chapter 27

Integral transformation

27.1 Laplace transformation

For historical reasons Maxima has two functions which can compute the Laplace
transform, laplace and specint. While Laplace knows more of the general rules
for Laplace transforms and can handle equations, specint recognizes some special
functions which Laplace doesn’t. laplace automatically calls specint, though, if it
cannot compute the Laplace transform, and therefore the user should preferably
employ laplace.

laplace (expr, t, s) [function]

Computes the Laplace transform of expr with respect to the integration variable t
and the transform parameter s. For instance, laplace(f(t),t,s) is equivalent to

Lƒ (s) =
∫ ∞

0
ƒ (t)e−st dt. (27.1)

Note that if expr is a function, it has to be expressed in terms of the integration
variable t, in the way it appears under the integral sign. However, expr can also be
an equation, e.g. a differential or integral equation. In this case laplace computes
the Laplace transform of both sides separately and returns an equation.

Like in desolve and unlike in ode2, functional dependencies must be explicitly spec-
ified in expr; implicit relations, established by depends, are not recognized. For
example, if f depends on x and y, f must be written as f(x,y) in expr.

laplace recognizes the functions delta, exp, log, sin, cos, sinh, cosh, and erf, as
well as dƒ ƒ , ntegrte, sm, and t. If laplace fails to find a transform, it calls
function specint. specint can find the laplace transform for expressions with special
functions like the bessel functions bessej, besse, . . . and can handle the unit_step
function. If specint cannot find a solution either, a noun laplace is returned.

expr may also be a linear, constant coefficient differential equation. Initial (IVP)
or boundary (BVP) values of the dependent variable can be specified with atvalue
prior to calling laplace. Note that initial conditions for the Laplace transform have
to be specified at t=0, with t being the independent variable. If one has initial
or boundary conditions imposed elsewhere, one can impose these on the general
solution returned by laplace and eliminate the constants by solving the general
solution and possibly its derivative for them and substituting their values back.

182

laplace recognizes convolution integrals of the form
∫ t

0
ƒ (t − τ)g(τ)dτ.

Other kinds of convolutions are not recognized.

In the following we give a number of small examples. Worked out examples for
solving differential or convolution integral equations are given in sect. 27.1.2.

(%i1) %e^(2*t+a)*sin(t)*t;

(%o1) t%e2t+ sin (t)

(%i2) laplace(%,t,s);

(%o2)
%e (2s − 4)
�

s2 − 4s + 5
�2

(%i3) laplace(’diff(f(t),t),t,s);
(%o3) s*laplace(f(t),t,s)-f(0)
(%i4) assume(n>0)$
(%i5) laplace(t^n,t,s);

(%o5)
(n + 1)

sn+1

specint (ƒ (t)∗ ep(−s∗ t), t) [function]

Compute the Laplace transform of function f(t) with respect to the variable t. Note
that the factor e−st has to be explicitely specified as part of the first argument. The
integrand f(t) may contain special functions. The following special functions are
recognized by specint: incomplete gamma function, error functions (but not the
error function erfi; it is easy to transform erfi e.g. to the error function erf), ex-
ponential integrals, bessel functions (including products of bessel functions), han-
kel functions, hermite and laguerre polynomials. Furthermore, specint can handle
the hypergeometric function %f[p,q]([],[],z), the whittaker function of the first kind
%m[u,k](z) and of the second kind %w[u,k](z). The value returned may be in terms
of special functions and can include unsimplified hypergeometric functions.

demo(hypgeo) displays several examples of Laplace transforms computed by specint.

27.1.1 Inverse Laplace transform

ilt (f(s), s, t) [function]

Computes the inverse Laplace transform of function f with respect to variable s and
parameter t. t will be the independent variable of the function returned. If f(s) is a
rational function, its denominator may only have linear and quadratic factors.

(%i1) laplace(b(t),t,s);
(%o1) pce(b(t), t, s)

︸ ︷︷ ︸

Lb(s)
(%i2) ilt(%,s,t);
(%o2) b(t)

183

27.1.2 Solving differential or convolution integral equations

The method of Laplace transformation is a powerful tool in science and engineering.
By using laplace and the inverse transformation with function ilt together with solve
or linsolve, Maxima can solve a single or a system of linear, constant coefficient dif-
ferential or of convolution integral equation(s). We demonstrate the procedure with
the second order linear ODE we already solved with ode2/ic2 and desolve/atvalue.

(%i1) assume(g>0,l>0)$
(%i2) eq: ’diff(φ(t),t,2)+g/l*φ(t)$

(%o2)
d2

dt2
φ(t) +

gφ(t)



(%i3) laplace(eq,t,s);

(%o3) −
d

dt
φ(t)

�

�

�

�

t=0
+ s2 lplce (φ(t), t, s) +

g lplce (φ(t), t, s)


− ϕ(0)s

(%i4) first(linsolve([%],[laplace(φ(t),t,s)]));

(%o4) lplce (φ(t), t, s) =

�

d
dt φ(t)

�

�

�

t=0

�

+ φ(0)s

 s2 + g

(%i5) φ(t)=ilt(rhs(Leq1),s,t)$
(%i6) expand(%),rootscontract;

(%o6) φ(t) =

√

√

√



g
sin

�√

√g


t

�

�

d

dt
φ(t)

�

�

�

�

t=0

�

+ φ(0) cos

�√

√g


t

�

Here we have achieved exactly the result from desolve,1 the general solution from
(%o3) of sect. 24.2.2. For an IVP with initial values at zero or at a point other than
zero we proceed exactly as we did there. Next we show, how a single convolution
integral equation can be solved with laplace.

(%i1) ’integrate(sinh(a*x)*f(t-x),x,0,t)+b*f(t) = t**2;

(%o1)

∫ t

0
f (t − ) sinh ()

︸ ︷︷ ︸

g()

d + b f(t) = t2

(%i2) laplace(%,t,s);

(%o2)
 lplce (f(t), t, s)

s2 − 2
+ b lplce (f(t), t, s) =

2

s3

(%i3) linsolve([%],[’laplace(f(t),t,s)]);

(%o3) [lplce (f(t), t, s)
︸ ︷︷ ︸

Lƒ (s)

=
2s2 − 22

bs5 +
�

 − 2b
�

s3
]

(%i4) f(t)=ilt(rhs(first(%)),s,t);
Is a*b*(a*b-1) positive, negative or zero? pos;

(%o4) ƒ (t) = −
2cosh

�p
b (b−1)t

b

�

3 b2 − 22b + 
+

 t2

b − 1
+

2

3 b2 − 22b + 

27.2 Fourier transformation

1Note that desolve in fact uses laplace, so it does exactly what we have just done.

184

Part VI

Advanced Mathematical
Computation

185

Chapter 28

Tensors

Notes:
- The dimensionality in itensor ist stored in the same variable dim as for ctensor.

28.1 Kronecker delta

kron_delta (
�

, j
�

� 1, j1, . . . , p, jp
�

) [function]

Computes according to Def. M-55.6 the Kronecker delta of arguments i and j, which
can be arbitrary expressions and are evaluated in the process of being compared
for identity by is(equal(i,j)). In the second option, p pairs , j will be compared,
and only in case that all of them match, 1 will be returned.

28.1.1 Generalized Kronecker delta

kdelta ([j1, . . . , jp], [1, . . . , p]) [function of itensor]

Computes according to Def. M-55.7 and Satz M-55.8 the generalized Kronecker
delta

δ
1...p
j1...jp

.

The first list in the arguments contains the values (∈ N) of the covariant and the
second one of the contravariant indices. The number of idices in both lists has to
be identical. The restriction of M-(55.9g) is not implemented. Note Viktor’s mail
from 2021-10-02 about the use of undeclared symbols in the lists.

28.1.2 Levi-Civita symbol

28.2 Elementary second order tensor decomposition

ElemTensorDecomp (M) [function of rs_tensor]

Decomposes according to Satz M-56.9 a second order tensor, given as an nn-
matrix M, into a sum of r elementary tensors, i.e. of tensor (or outer) products of
nn-vectors , b, where r is the rank of the original tensor, i.e. the matrix M

M =
r
∑

=1

⊗ b.

186

The contravariant vectors  are derived from the columns of M, while the covariant
vectors b are computed accordingly. The function returns a matrix A containing
the  als columns and a matrix B with the respective b as rows. The function then
checks, whether the sum of the products equals M.

28.3 Evaluation of tensors and tensor products

See Ex 2.2-1 p.30 Das Tensors.wxm

28.3.1 Tensor product of vectors

28.3.2 Tensor product of tensors

28.3.3 Symmetrization

187

Chapter 29

Numerical Computation

188

Chapter 30

Strings and string processing

30.1 Data type string

"string" [matchfix operator]

A string is a character sequence which is not evaluated as an expression. There is
a specific data type string in Maxima. A string is entered by enclosing it in double
quote marks ". Maxima will display a string without double quote marks, unless the
option variable stringdisp has been set to true. There is no data type for a character
in Maxima; a single character is represented as a one-character string.

Strings may contain any characters, including embedded tab, newline, and carriage
return characters. The sequence \" is recognized as a literal double quote, and \\ as
a literal backslash. When backslash appears at the end of a line, the backslash and
the line termination (either newline or carriage return and newline) are ignored,
so that the string continues with the next line. No other special combinations of
backslash with another character are recognized; when backslash appears before
any character other than ", or a line termination, the backslash is ignored. There
is no way to represent a special character (such as tab, newline, or carriage return)
except by embedding the literal character in the string.

30.2 Transformation between expression and string

An expression and a string may look alike,1 but they have to be distinguished.
While an expression can be evaluated by Maxima and used for computation, a
string cannot. When the user types in an input expression, basically it is nothing
but a string at first. On parsing it, Maxima will transform it into an expression that
can be evaluated. On the other hand, a Maxima program may build up a string
by concatenation to form an expression which is to be parsed and evaluated. In
this case, however, it will remain a string until we explicitly transform it into an
expression. We can also transform expressions into strings, for instance in order
to use them as the elements for building up a new string by concatenation, to be
transformed to a new expression.

1In particular, when stringdisp is false, as by default, and strings are not enclosed in double quota-
tion marks.

189

30.2.1 Expression → string

string (expr) [function]

Converts the expression expr to Maxima’s linear notation just as if it had been typed
in. The return value is a string.

Functions concat and sconcat also convert their arguments which are expressions
into strings (or symbols).

30.2.2 String → expression

parse_string (str) [function of stringproc]

Parses the string str as a Maxima expression, but does not evaluate it. The string
str may or may not have a terminator (dollar sign $ or semicolon ;). Only the first
expression is parsed, if there is more than one.

eval_string (expr) [function of stringproc]

Parses the string str as a Maxima expression and then evaluates it. The string str
may or may not have a terminator (dollar sign $ or semicolon ;). Only the first
expression is parsed and evaluated, if there is more than one.

30.3 Display of strings

string (expr) default: false [option variable]

When stringdisp is true, strings are displayed enclosed in double quote marks. Oth-
erwise, quote marks are not displayed. See concat for an example. stringdisp is
always true when displaying a function definition.

30.4 Manipulating strings

concat (rg1, . . . , rgn) [function]
sconcat (rg1, . . . , rgn) [function]

concat concatenates its arguments, which can be expressions, symbols or strings.
Arguments are evaluated and must evaluate to atoms.2 The return value is a sym-
bol if the first argument is a symbol, and a string otherwise. The single quote ’
preceeding an argument prevents its evaluation.

(%i1) a:5$
(%i1) str:concat(1+1,a,string(b+c),"we(");
(%o2) 25c+bwe(
(%i3) stringdisp:true$
(%i4) str;
(%o4) "25c+bwe("

2Function string can be used to transform an argument evaluating to a non-atomic expression into
a string.

190

sconcat does the same as concat with the only differences, that arguments need
not evaluate to atoms and that the return value is always a string.

(%i1) i:3$
(%i2) sconcat("x[",i,"]:",expand((x+y)^2));
(%o2) x[3]:y^2+2*x*y+x^2

A symbol concatenated by concat can be assigned a value and used in computation.
The :: (double-colon) assignment operator can be used to evaluate not only the
right hand side, but also the left hand side of the assignment.

(%i1) concat(c,6)::7+1$
(%i2) c6;
(%o2) 8

30.5 Package stringproc

The package stringproc contains a large number of sophisticated functions for string
processing. It is loaded automatically by Maxima on using one of its functions.

191

Part VII

Maxima Programming

192

Chapter 31

Compound statements

31.1 Sequential and block

31.1.1 Sequential

(epr1, . . . , eprn) [matchfix operator]

A number of statements can be enclosed in parentheses and separated by commas.
Such a list of sub-statements is the most simple form of a compound statement We
call it a sequential. Maxima evaluates the sub-statements in sequence and only
returns the value of the last one.

31.1.2 Block

block ([1, . . . , n], epr1, . . . , eprm) [function]
block ([1, . . . , n], local (1, . . . , n), epr1, . . . , eprm)

A block allows to make variables 1, . . . , m local to the sequence of sub-statements
epr1, . . . , eprm. If these variables (symbols) are already bound, block saves their
current values upon entry to the block and then unbinds the symbols so that they
evaluate to themselves. The local variables may then be bound to arbitrary values
within the block. When the block is exited, the saved values are restored, and the
values assigned within the block are lost.

Note that the block declaration of the first line will make variables 1, . . . , m local
only with respect to their values. However, in Maxima, just like in Lisp, a large num-
ber of qualities can be attributed to symbols by means of properties. Properties of
1, . . . , m are not made local by a plain block declaration! They stay global, which
means that properties already assigned to these symbols on entry to the block will
remain inside of the block, and properties assigned to these symbols inside of the
block will not be removed on exiting the block. In order to make symbols 1, . . . , m
local to the block with respect to their properties, too, they have to be declared
with function local inside of the block. For example, some declarations of a symbol
are implemented as properties of that symbol, including :=, array, dependencies,
atvalue, matchdeclare, atomgrad, constant, nonscalar, assume. local saves and
removes such declarations, if they exist, and makes declarations done within the
block effective only inside of the block; otherwise such declarations done within a
block are actually global declarations.

193

A block may appear within another block. Local variables are established each
time a new block is evaluated. Local variables appear to be global to any enclosed
blocks. If a variable is non-local in a block, its value is the value most recently
assigned by an enclosing block, if any, otherwise, it is the value of the variable in
the global environment. This policy may coincide with the usual understanding of
dynamic scope.

The value of the block is the value of its last sub-statement, or the value of the
argument to the function return, which may be used to exit explicitly from the
block at any point.

The function go may be used to transfer control to the statement of the block that
is tagged with the argument to go. To tag a statement, precede it by an atomic
argument as another sub-statement in the block. For example:
block ([x], x:1, loop, x: x+1, ..., go (loop), ...).
The argument to go must be the name of a tag appearing within the block; one
cannot use go to transfer to a tag in a block other than the one containing the go.
Using labels and go to transfer control, however, is unfashionable and not recom-
mended.

local (1, . . . , n) [function]

The declaration local (1, . . . , m) within a block saves the properties associated
with the symbols 1, . . . , m, removes them from the symbols, and restores any
saved properties on exit from the block. This statement should best be placed
directly after the list of the local variables at the beginning of the block.

31.2 Function

31.2.1 Function definition

31.2.1.1 Defining the function

:= [infix operator]
f(1, . . . , n) := expr
":="

�

ƒ (1, . . . , n), epr
�

define
�

ƒ (1, . . . , n),′ epr
�

define
�

ƒ (1, . . . , n), epr
�

[function]
f(1, . . . , n) := ′ ′expr

A user function has to be defined before it can be used, i.e. called. A function can
be defined either with the function definition operator := or with function define.
Both ways are similar, but not identical. The similarity can be seen more clearly
if the := operator is written as an operator function. The difference between :=
and define is that := never evaluates the function body unless explicitly forced by
quote-quote ’ ’, whereas define always evaluates the function body unless explicitly
prevented by single quote ′. The function name is not evaluated in either case. If
the function name is to be evaluated, one of the following expressions can be used

define (funmake (ƒ , [1, . . . , n]), expr)

194

define (funmake (ƒ [1, . . . , n], [y1, . . . , yn]), expr)
define (arraymake (ƒ , [1, . . . , n]), expr)
define (ev (epr1), epr2).

The first expression using funmake returns an ordinary function with parameters
in parentheses, see section 31.2.3. The expression using arraymake returns an
array function with parameters in square brackets, see section 31.2.4. The second
expression using funmake returns a subscripted function, see section 31.2.5. The
expression with ev can be used in any case.

(%i1) f:g $ u:x $
(%i3) define (funmake (f, [u]), cos(u) + 1);
(%o3) g(x) := cos(x) + 1
(%i4) define (arraymake (f, [u]), cos(u) + 1);
(%o4) g := cos() + 1
(%i5) define (f(x,y), g (y,x));
(%o5) f(x,y) := g(y,x)
(%i6) define (ev(f(x,y)), sin(x) - cos(y));
(%o6) g(y,x) := sin(x) - cos(y)

31.2.1.2 Showing the function definition

fundef(f) [function]

Returns the definition of function f. fundef quotes its argument; the quote-quote
operator ′ ′ defeats quotation. The argument may be the name of a macro (defined
with ::=), an ordinary function (defined with := or define), an array function (defined
with := or define, but enclosing arguments in square brackets []), a subscripted
function (defined with := or define, but enclosing some arguments in square brack-
ets and others in parentheses ()), one of a family of subscripted functions selected
by a particular subscript value, or a subscripted function defined with a constant
subscript.

dispfun(
�

ƒ1, . . . , ƒn
�

�
�

) [function]

Displays the definition of the user-defined functions ƒ1, . . . , ƒn. Each argument may
be the name of a macro (defined with ::=), an ordinary function (defined with :=
or an array function (defined with := or define, but enclosing arguments in square
brackets []), a subscripted function (defined with := or define, but enclosing some
arguments in square brackets and others in parentheses ()), one of a family of sub-
scripted functions selected by a particular subscript value, or a subscripted function
defined with a constant subscript. dispfun (all) displays all user-defined functions
as given by the functions, arrays, and macros lists, omitting subscripted functions
defined with constant subscripts. dispfun creates an intermediate expression label
(%t1, %t2, etc.) for each displayed function, and assigns the function definition to
the label. dispfun quotes its arguments; the quote-quote operator ′ ′ defeats quo-
tation. dispfun returns the list of intermediate expression labels corresponding to
the displayed functions. For an example and the use of these expression labels see
[MaxiManE17].

195

31.2.2 Function call

31.2.2.1 Quoting a function call

A function call can be quoted in two different ways: ’f(x) is the noun form of the
function call and has to be evaluated with the nouns flag set in ev. ’(f(x)) quotes
the whole expression and can be evaluated without the noun flag set. In order to
see whether a function call is a noun form or not, the flag noundisp can be set, see
Stavros’ mail from Oct. 26, 2020 in Maxima discuss .

31.2.3 Ordinary function

f(1, . . . , n) := expr
f(1, . . . , n) := block ([1, . . . , p], epr1, . . . , eprm)
f(1, . . . , n) := block ([1, . . . , p], local (1, . . . , n, 1, . . . , p), epr1, . . . , eprm)

The first line defines a function named f with parameters 1, . . . , n and function
body expr.

An ordinary function is a function which encloses its parameters (at function defi-
nition) and arguments (at function call) with parentheses (). The function body of
an ordinary function is evaluated every time the function is called. Before the func-
tion body is evaluated, the function call’s arguments (after having been evaluated
themselves) are assigned to the function’s parameters.

Usually the function body will be a block, allowing for the declaration of local vari-
ables, as demonstrated in the second and third line. (Note that the function param-
eters may not be repeated here.) Inside of a function body, local can - and should -
be applied both to the local variables and the function parameters. If they are not
declared local, parameters, just like local variables, are local only with respect to
their values, but not with respect to their properties!

(%i1) properties(x);
(%o1) []
(%i2) f(x):=block([a], local(a), a:1, declare (x,odd), x:a)$
(%i3) properties(x);
(%o3) []
(%i4) f(3);
(%o4) 1
(%i5) properties(x);
(%o5) [database info, kind(x,odd)]
(%i6) kill(all)$
(%i7) f(x):=block([a], local(x,a), a:1, declare (x,odd), x:a)$
(%i8) f(3);
(%o8) 1
(%i9) properties(x);
(%o9) []

If some parameter k is a quoted symbol (for define: after evaluation), the function
defined does not evaluate the corresponding argument when it is called. Otherwise
all arguments are evaluated.

(%i1) f(x):=x^2;

196

(%o1) ƒ () := 2

(%i2) a:b$ f(a);

(%o2) b2

(%i3) f(’x):=x^2;

(%o3) ƒ (′) := 2

(%i4) a:b$ f(a);

(%o4) 2

(%i5) define(f(’x),x^2);

(%o5) ƒ () := 2

(%i6) a:b$ f(a);

(%o6) b2

(%i7) define(f(’(’x)),x^2);

(%o7) ƒ (′) := 2

(%i8) a:b$ f(a);

(%o8) 2

f(1, . . . , n−1, [L]) := expr

If the last or only parameter n is a list of one element, the function defined accepts
a variable number of arguments. Arguments are assigned one-to-one to parame-
ters 1, . . . , (n−1), and any further arguments, if present, are assigned to n as a
list. In this case, arguments 1, . . . , (n−1) are required arguments, while all further
arguments, if present, are optional arguments.

All functions defined appear in the same global namespace. Thus, defining a func-
tion f within another function g does not automatically limit the scope of f to g.
However, an additional statement local (f) inside of the block of g makes the defi-
nition of function f effective only within the block of function g.

functions default: [] [system variable]

functions is the list of ordinary Maxima functions having been defined by the user
in the current session.

31.2.4 Array function, memoizing function

f[1, . . . , n] := expr

define (f[1, . . . , n], expr)
define (funmake (f, [1, . . . , n]), expr)
define (arraymake (f, [1, . . . , n]), expr)
define (ev (expr_1), expr_2)

f[1, . . . , n] := expr defines an array function. Its function body is evaluated just
once for each distinct value of its arguments, and that value is returned, without
evaluating the function body, whenever the arguments have those values again.
Such a function is known as a memoizing function.

197

31.2.5 Subscripted function

f[1, . . . , n](y1, . . . , ym) := expr

define (f[1, . . . , n](y1, . . . , yn), expr)

An subscripted function f[1, . . . , n](y1, . . . , ym) := expr is a special case of an
array function f[1, . . . , n] which returns a lambda expression with parameters
y1, . . . , ym. The function body of the subscripted function is evaluated only once for
each distinct value of its parameters (subscripts) 1, . . . , n, and the correspond-
ing lambda expression is that value returned. If the subscripted function is called
not only with subscripts 1, . . . , n in square brackets, but also with arguments
y1, . . . , yn in parentheses, the corresponding lambda expression is evaluated and
only its result is returned.

Note that a normal array function, see section 31.2.4, is also represented by Maxima
with its parameters as subscripts, because they appear in square brackets. This is
somewhat misleading, since they don’t constitute real indices, but plain variables.
Therefore we don’t call such a function a subscripted function.

In the following example, the function body is a simple sequential compound state-
ment, a list of expressions in parentheses, which are evaluated consecutively. Only
the value of the last of them is returned.

(%i1) f[n](x):= (print("Evaluating f for n=", n), diff (sin(x)^2, x, n));

(%o1) ƒn() :=
�

print ("Evaluating f for n=", n),
dn

dn
sin2()

�

(%i2) f[1];
Evaluating f for n=1
(%o2) lambda([x], 2 cos(x) sin(x))
(%i3) f[1];
(%o3) lambda([x], 2 cos(x) sin(x))
(%i3) f[1](%pi/3);

(%o3)

p
3

2
(%i4) f[2];
Evaluating f for n=2

(%o4) lambda ([],2cos2() − 2sin2())
(%i5) f[2](%pi/3);
(%o5) -1
(%i6) f[3](%pi/3);
Evaluating f for n=3
(%o3) −2

p

3

31.2.6 Constructing (and calling) a function

31.2.6.1 Apply: construct and call

apply (f,[1, . . . , n]) [function]

apply (f,[1, . . . , n]) evaluates its arguments and constructs an expression f(1, . . . , n),
which is a function call of function f with arguments 1, . . . , n in parentheses. The
expression is simplified and evaluated, which means that f is called. The return
value of apply is the return value of this function call of f.

198

31.2.6.2 Funmake: construct only

funmake (f,[1, . . . , n]) [function]

funmake (f,[1, . . . , n]) evaluates its arguments and returns an expression f(1, . . . , n)
which is a function call of function f with arguments 1, . . . , n in parentheses. The
return value is simplified, but not evaluated. So f is not called, even if it exists. To
evaluate the return value, either ev(%) or ”% can be used, but only in a separate,
second statement.

f can be an ordinary function, a subscripted function or a macro function. In case f is
an already defined array function, funmake will nevertheless return an expression
with the arguments in parentheses. If an array function call with the arguments in
square brackets is to be returned, use arraymake instead.

(%i1) f(x,y):= y^2-x^2;

(%o1) ƒ (, y) := y2 − 2
(%i2) funmake(f,[a+1,b+1]);
(%o2) f(a+1,b+1)
(%i3) ev(%);

(%o3) (b + 1)2 − ( + 1)2

(%i4) g[a](x) := (x - 1)^a;
(%o4) g() := ( − 1)
(%i5) funmake (g[n],[b]);

(%o5) lambda
�

[], ( − 1)n
�

(b)
(%i6) ev(%);
(%o6) (b − 1)n
(%i7) funmake (’g[n],[b]);
(%o7) gn(b)
(%i8) ev(%);
(%o8) (b − 1)n

(%i9) h(x) ::= (x - 1)/2;

(%o9) h() ::=
 − 1

2

(%i10) funmake(h,[u]);
(%o10) h(u)
(%i11) ev(%);

(%o11)
 − 1

2

funmake can be used in a function definition with define to evaluate the function
name.

199

31.3 Lambda function, anonymous function

lambda ([1, . . . , m], epr1, . . . , eprn) [function]

This is called a lambda function or anonymous function. It defines and returns what
is called a lambda expression, but does not evaluate it.

(%i1) lambda([x],x+1);
(%o1) lambda([x],x+1)

A lambda expression can be evaluated like an ordinary function by calling it with
arguments in parentheses corresponding to the lambda function’s parameters.

(%i1) lambda([x],x+1)(3);
(%o1) 4

When a lambda expression is evaluated, unbound local variables 1, . . . , m are cre-
ated. Then the arguments (after having been evaluated themselves) are assigned
to the parameters. epr1, . . . , eprn are evaluated in turn, and the value of eprn
is returned.

lambda ([1, . . . , m, [L]], epr1, . . . , eprn)

If the last or only parameter n is a list of one element, the function defined accepts
a variable number of arguments. Arguments are assigned one-to-one to parame-
ters 1, . . . , (n−1), and any further arguments, if present, are assigned to n as a
list.

lambda may appear within a block or another lambda; local variables are estab-
lished each time another block or lambda expression is evaluated. Local variables
appear to be global to any enclosed block or lambda. If a variable is not local, its
value is the value most recently assigned in an enclosing block or lambda expres-
sion, if any, otherwise, it is the value of the variable in the global environment. This
policy may coincide with the usual understanding of dynamic scope.

A lambda function definition does not evaluate any of its arguments, neither the
expressions nor the parameters given as a list in square brackets. Evaluation at
definition time can, however, be forced individually with quote-quote. In this re-
spect the lambda function definition behaves like the definition of an ordinary func-
tion with :=. The difference is, that a lambda function has no individual name; the
lambda expression itself substitutes the function name.

(%i1) x:a$
(%i2) lambda([x],x+1);
(%o2) lambda([x],x+1)
(%i3) lambda([x],x+1)(3);
(%o3) 4

(%i1) x:a$
(%i2) lambda([’’x],x+1);
(%o2) lambda([a],x+1)
(%i3) lambda([’’x],x+1)(3);
(%o3) a+1

200

(%i1) x:a$
(%i2) lambda([’’x],’’x+1);
(%o2) lambda([a],a+1)
(%i3) lambda([’’x],’’x+1)(3);
(%o3) 4

A lambda expression can be assigned to a variable v. Evaluating this variable with
arguments in parentheses corresponding to the parameters of the lambda expres-
sion looks like a function call of an ordinary function named v. However, properties
shows that v is not a function.

(%i1) v:lambda([x],x+1);
(%o1) lambda([x],x+1)
(%i2) v(3);
(%o2) 4
(%i3) properties(v);
(%o3) [value]
(%i4) u(x):=x+1;
(%o4) u(x):=x+1
(%i5) u(3);
(%o5) 4
(%i6) properties(u);
(%o6) [function]

A lambda expression may appear in contexts in which a function name is expected.
If a function definition is needed only for one specific context of calling this func-
tion, a lambda expression can efficiently substitute such a function definition and
function call. It combines both steps, and the definition of a function name be-
comes unnecessary. In such a situation the definition of a lambda expression and
its evaluation fall together.

(%i1) f(x):=2*x$
(%i1) map(f,[1,2,3,4,5]);
(%o1) [2,4,6,8,10]

(%i2) map(lambda([x],2*x),[1,2,3,4,5]);
(%o2) [2,4,6,8,10]

31.4 Macro function

A MaximaL macro function, sometimes simply called a macro, is very similar to
a Lisp macro. The difference to an ordinary MaximaL function is the following.
A macro function when being called does not evaluate its arguments before the
macro function body itself is evaluated. We say that a macro function quotes its
arguments, because a Maxima quote operator inhibits evaluation of its arguments.
The call of a macro function is executed in two steps. First the so-called macro
expansion is created,a term again refering to the macro concept in Lisp. The macro
expansion is a form, which is immediately afterwards evaluated in the context from
which the macro was called. With function macroexpand only the first step is done.

201

In many cases the effect of a macro function call is equivalent to an ordinary func-
tion call plus one additional evaluation with either quote-quote or ev. Note that ad-
ditional and even multiple evaluations with either quote-quote or ev can follow both
an ordinary and a macro function call. See "Macro function demonstration.wxm" for
an illustrative comparison of two macro functions with their corresponding ordinary
functions.

31.4.1 Macro function definition

::= [infix operator]

This is the macro function definition operator. It is used with a syntax similar to the
:= operator.

macros [system variable]

The value of this system variable is a list of all user-defined macro functions. The
macro function definition operator ::= puts a new macro function on this list. kill,
remove, and remfunction remove macro functions from the list.

31.4.2 Macro function expansion

macroexpand (f(x)) [infix operator]

Expands the macro function call f(x) without evaluating it. If the argument of
macroexpand is not a macro function call, it is returned. If the expansion of expr
yields another macro function call, that macro function call is also expanded. macro-
expand quotes its argument just as a function call of the macro function does.
However, if the expansion of a macro function call has side effects (e.g. printing
out something), these side effects are executed.

31.4.3 Macro function call

See introductory section.

202

Chapter 32

Program Flow

203

Part VIII

User interfaces, Package
libraries

204

Chapter 33

User interfaces

33.1 Internal interfaces

33.1.1 Command line Maxima

33.1.2 wxMaxima

33.1.3 iMaxima

33.1.4 XMaxima

33.1.5 TeXmacs

33.1.6 GNUplot

33.2 External interfaces

33.2.1 Sage

33.2.2 Python, Jupyter, Java, etc.

205

Chapter 34

Package libraries

34.1 Internal share packages

34.2 External user packages

34.3 The Maxima exernal package manager

206

Part IX

Maxima development

207

Chapter 35

MaximaL development

35.1 Introduction

This chapter describes from the practical viewpoint how larger programs to be writ-
ten in MaximaL can be developed and how they are made available to be used
for the practical work with Maxima. The next chapter will describe the same for
developments done in Lisp.

In general, we will want to use MaximaL whenever possible for solving mathemati-
cal problems. This language is much easier to learn and to use than Lisp. MaximaL
is Maxima’s primary user interface. This language has some limitations, though.
Since it is not lexically but dynamically scoped, there might be problems with name
spaces for variables and functions, if large user packages are to be used. We will
focus on these problems later and show what can be do to limit them as much as
possible when programming the package and when using it.

Lisp has to be used whenever system features of Maxima shall be changed or
amended. In addition, it might be considerable to use Lisp instead of MaximaL if
scoping is an issue. Contrary to MaximaL, Lisp comprises strong concepts of lexical
scoping.

It is also possible to call Lisp functions from MaximaL and to call MaximaL functions
from Lisp. So we can combine both languages in order to find the most efficient
programming solution for our problem.

Both MaximaL and Lisp programs can be compiled instead of just interpreted (as
Maxima and Lisp usually do). This may be useful for reasons of speed. We will show
when this is advisable and how it is done.

Let’s start with MaximaL now. To summarize, there are two major issues. The first
one is how to support programming packages in the Maxima language. There is no
particular IDE available for MaximaL programming, so we have to invent our own
development environment.

The second issue is how MaximaL packages we have written can be made available
efficiently for our practical computational work with Maxima and possibly for other
Maxima users, too.

The source code for MaximaL programs is generally stored in .mac files and can be
loaded into a running Maxima session from the command line or from within other

208

programs. This is possible with all Maxima interfaces. Another option when working
with wxMaxima is to store work in .wxm or .wxmx files. But these file types can only
be read by this interface. However, a feature to export them to the .mac format is
available in wxMaxima, too.

Due to its concept of input cells instead of the purely linear input and output stream
of the usual Maxima REPL (read evaluate print loop) that all other interfaces pro-
vide, we feel that wxMaxima is most apt as a MaximaL development platform. How-
ever, a major drawback is that it suppresses most of MaximaL’s debugging facilities
and that it has almost no error handling.

35.2 Development with wxMaxima

35.2.1 File management

35.3 Error handling and debugging facilities in Maxi-
maL

35.3.1 Break commands

Break commands are special MaximaL commands which are not interpreted as Max-
ima expressions. A break command can be entered at the Maxima prompt or the
debugger prompt (but not at the break prompt). Break commands start with a
colon, ":".

For example, to evaluate a Lisp form you may type :lisp followed by the form to
be evaluated. (Chapter 38: Debugging 635 5 The number of arguments taken
depends on the particular command. Also, you need not type the whole command,
just enough to be unique among the break keywords. Thus :br would suffice for
:break. The keyword commands are listed below. :break F n Set a breakpoint in
function F at line offset n from the beginning of the function. If F is given as a
string, then it is assumed to be a file, and n is the offset from the beginning of
the file. The offset is optional. If not given, it is assumed to be zero (first line of
the function or file). :bt Print a backtrace of the stack frames :continue Continue
the computation :delete Delete the specified breakpoints, or all if none are specified
:disable Disable the specified breakpoints, or all if none are specified :enable Enable
the specified breakpoints, or all if none are specified :frame n Print stack frame n, or
the current frame if none is specified :help Print help on a debugger command, or
all commands if none is specified :info Print information about item :lisp some-form
Evaluate some-form as a Lisp form :lisp-quiet some-form Evaluate Lisp form some-
form without any output :next Like :step, except :next steps over function calls
:quit Quit the current debugger level without completing the computation :resume
Continue the computation :step Continue the computation until it reaches a new
source line :top Return to the Maxima prompt (from any debugger level) without
completing the computation

209

35.3.2 Tracing

35.3.3 Analyzing data structures

35.4 MaximaL compilaton

35.5 Providing and loading MaximaL packages

210

Chapter 36

Lisp Development

36.1 MaximaL and Lisp interaction

36.1.1 History of Maxima and Lisp

Maxima is written in Lisp, and much of the terminology used within MaximaL is
based on the terminology used within Lisp. Since Maxima was, in the early phase
of the 1960s and 1970s, as part of MIT’s project MAC, developed in parallel to
Lisp, Maxima’s basic design decisions were based on the state of the art of the
contemporary Lisp’s available. The early parts of Maxima were written in MACLisp,
which was also developed as part of MIT’s project MAC. When Common Lisp had
been established as a standard, most of Maxima’s source code was translated to it.
However, some parts remained in MACLisp, having been wrapped into Common Lisp
user functions, so that they could be understood by the Common Lisp interpreter or
compiler. While these relics have stayed in Maxima until today, Common Lisp itself
has been refined and enhanced over the years up to the present ANSI standard.
While new Lisp development within Maxima can make use of the entire functionality
of this advanced standard, which most of today’s Comon Lisp systems understand,
the major part of Maxima makes use only of the basic language elements from the
early days of Common Lisp.

36.1.2 Accessing Maxima and Lisp functions and variables

Maxima is written in Lisp, and it is easy to access Lisp functions and variables from
MaximaL and vice versa.
The correspondence between MaximaL and Lisp identifiers is described in section
3.4.3.
Then we show how the user can use Lisp forms within his Maxima session or in-
side of his MaximaL code in order to visualize and interact with data and program
structures on Maxima’s Lisp level.
FInally it is decribed how MaximaL expressions can be used from within Lisp code.

36.1.2.1 Executing Lisp code under MaximaL

36.1.2.1.1 Switch to an interactive Lisp session temporarily

211

The MaximaL function to_lisp opens an interactive Lisp session. Entering the Lisp
form (to-maxima) closes the Lisp session and returns to MaximaL.

36.1.2.1.2 Single-line Lisp mode

Lisp code may be executed from within a MaximaL session. A single line of Lisp
(containing one or more forms) may be executed with the MaximaL break command
:lisp. E.g.

(%i1) :lisp (foo $x $y)

calls the Lisp function foo with MaximaL variables x and y as arguments. The :lisp
construct can appear at the interactive Maxima or debugger prompt or in a file
processed by batch or demo, but not in a file processed by load, batchload, trans-
late_file, or compile_file.

Further examples: Use primitive (i.e. standard CL function) "+" to add the values
of MaximaL variables x and y:

(%i1) x:10$ y:5$
(%i3) :lisp (+ $x $y)
15

Use Maxima Lisp function add to symbolically add MaximaL variables a and b, and
assign the result to c:

(%i1) :lisp (setq $c (add ’$a ’$b))
((MPLUS SIMP) $A $B)
(%i1) c;
(%o1) b + a

Show the Lisp properties of MaximaL variable d:

(%i1) context;
(%o1) initial
(%i2) supcontext(d);
(%o2) d
(%i3) :lisp (symbol-plist ’$d)
(subc ($initial))

36.1.2.1.3 Using Lisp forms directly in MaximaL

There is yet another way to execute Lisp code from within a MaximaL session. Lisp
forms can - with some syntactical adaptation - be included directly into MaximaL
code. This mechanism works with the help of the ? escape to access Lisp identifiers
from MaximaL described in section 3.4.3.

In order to synchronize the different syntax of MaximaL and Lisp, Lisp forms here
are notated in a way which resembles MaximaL: instead of the Lisp function being
the first element of a list and the arguments the remaining elements, the function
name is set in front of the list which then includes only the arguments, separated
by commas. E.g. the Lisp form

(foo a b c)

with some Lisp function foo is written when called from MaximaL as

212

?foo (a, b, c);

For example, if the internal structure of some MaximaL variable a is to be displayed,
we can make use of the Lisp print function by

?print ($a);

Note that this mechanism does not work for all Lisp functions.

In particular, some Lisp functions are shadowed in Maxima, namely the following:
complement, continue, "//", float, functionp, array, exp, listen, signum, atan, asin,
acos, asinh, acosh, atanh, tanh, cosh, sinh, tan, break, gcd.

36.1.2.2 Using MaximaL expressions within Lisp code

36.1.2.2.1 Reading MaximaL expressions into Lisp

The #$ Lisp macro allows the use of Maxima expressions in Lisp code. #$expr$
expands to a Lisp expression equivalent to the Maxima expression expr. E.g.

(msetq $foo #$[x, y]$)

in Lisp has the same effect as has in MaximaL

(%i1) foo: [x, y];

36.1.2.2.2 Printing MaximaL expressions from Lisp

The Lisp function displa prints an expression in Maxima format.

(%i1) :lisp #$[x, y, z]$
((MLIST SIMP) $X $Y $Z)
(%i1) :lisp (displa ’((MLIST SIMP) $X $Y $Z))
[x, y, z]
NIL

36.1.2.2.3 Calling MaximaL functions from within Lisp

Functions defined in Maxima are not ordinary Lisp functions. The Lisp function
mfuncall calls a Maxima function. For example:

(%i1) foo(x,y) := x*y$
(%i1) :lisp (mfuncall ’$foo ’a ’b)
((MTIMES SIMP) A B)

213

36.2 Using the Emacs IDE

36.3 Debugging

36.3.1 Breaks

36.3.2 Tracing

36.3.3 Analyzing data structures

36.4 Lisp compilation

36.5 Providing and loading Lisp code

There are basically two ways how to incorporate changes and amendments to the
Lisp code of Maxima. The easy way is to just load it into a Maxima session. Often
this method will be sufficient, in particular if we want to load whole new packages
written in Lisp. But this method has drawbacks when modifying system code. To
overcome them, the new or modified Lisp code has to be committed with Git, and
then Maxima has to be rebuilt from the modified source code base.

36.5.1 Loading Lisp code

36.5.1.1 Loading whole Lisp packages

36.5.1.2 Modifying and loading individual system functions or files

The user can, at the start or at any later point within a running Maxima session,
modify the code of Maxima itself. This is done by reloading files containing Max-
ima system or application Lisp code, or even by reloading only individual functions
from them. All function definitions, system variables, etc., of a reloaded file or
only the individually reloaded functions will overwrite the existing system function
definitions and variables of the same name. This is independent of whether the
existing file or function was compiled or not. Depending on the Lisp used and on
the setting of Lisp system variables, the system may issue a warning concerning
the redefinition of each function or variable, but it will not decline to do so. From the
moment on where it has been successfully loaded, the new function definition will
be used whenever the function is called. So any Maxima system function can easily
be changed by just reloading a modified version of its definition. It is not necessary
to reload the whole system file which contains it, and it is not necessary for the file
that contains the modified function to have the same name as the original system
file. Only the name of the function has to be identical. Of course, new functions can
be added this way, too.

This method is so easy that most people will want to try it out and see whether it is
sufficient for their needs.

The substitution or adding of function definitions can be automated by incorporating
the reload procedure in the maxima-init.lisp or maxima-init.mac files to be executed
at Maxima startup time. Even after a new Maxima release, the procedure does not

214

have to be changed. So in some kind, we can apply our changes on top of the latest
Maxima release.

36.5.2 Committing Lisp code and rebuilding Maxima

The method described above, however, as nice as it might seem in the beginning,
will be more and more complicated with a growing number of modifications we
make and files that are affected. Furthermore, we cannot easily incorporate modi-
fications that the Maxima team might issue in the meantime at precisely the same
files or functions that we have changed ourselves. To prevent such conflicts, at a
certain point the user will have no other choice but to use Git to manage his local
repository, commit and merge his modifications with the ones from Sourceforge, or
rebase them on top. This method will be described in detail in chapter 38.

215

Part X

Developer’s environment

216

Chapter 37

Emacs-based Maxima Lisp IDE

It should be mentioned first that I owe large parts of the information provided in this
chapter to the kind help of Michel Talon and Serge de Marre. Michel could answer
almost any question about how to set up the environment under Windows, although
he himself does not have a Windows machine at all. Serge was maybe the first one
who had figured out how to fully set it up under Windows. With videos on Youtube
he showed how it works. Both helped me for weeks with this non-trivial matter.
Thanks a lot to both of you.

Hopefully, what took me months to find out and set up can be accomplished by the
reader of the following instructions in a couple of days.

37.1 Operating systems and shells

We are going to set up and use the Emacs-based Maxima Lisp IDE primarily under
Windows 10. But we will also set up a complete Linux environment inside of Vir-
tualBox under Windows and in addition use Linux-like environments directly under
Windows, namely MinGW and Cygwin.

37.2 Maxima

As a basis we need to have Maxima installed. There are two basic options.

37.2.1 Installer

The easiest way to install Maxima on Windows is to use the Maxima installer which
can be downloaded from Sourceforge and which is available for every new release.

Download the latest Maxima installer and install it in C:/Maxima/, disregarding the
default. Copy shortcuts for wxMaxima, console Maxima and XMaxima to the desk-
top. Special icons for the latter two can be found in the directory tree.

The installer comes with 64 bit SBCL and Clisp. Although it is preset to Clisp, it is
recommended to set the standard Lisp to SBCL, because it is much faster and much
more powerful. We will only use SBCL. Note that Clisp does not support threading
and does not work properly under Emacs in combination with Slime, especially if it
comes to the slime-connect facility, see below.

217

Use the Configure default Lisp for Maxima feature from the Windows program menu
to set Lisp to SBCL.

37.2.2 Building Maxima from tarball or repository

Using Maxima from an installer does have some drawbacks, though. Due to the
fact that it was not compiled on the same system where it is used, Emacs cannot
find the source code interactively within a running Maxima session under Slime.
Finding the source code automatically for a given MaximaL function, however, is a
very useful feature, as we will see later.

In order to allow for this feature to work, we will have to build Maxima ourselves.
This can be done from a Maxima tarball which is provided for every new release
and can be downloaded from Sourceforge. Or it can be done from a local copy of
the Maxima repository which also resides on Sourceforge. In this case, the build
process is a little bit longer, but we can use the latest snapshot available.

We build Maxima directly under Windows with the so-called Lisp only build process,
see chapter 39. Alternatively, Maxima can be built for Windows under Cygwin, see
section ??.

37.3 External program editor

37.3.1 Notepad++

If we are not really familiar with the Emacs editor yet, it is worthwhile to use
Notepad++ in addition. See https://notepad-plus-plus.org/ for reference. It is widely
used, supported by Git, and has parentheses highlighting which is most important
for programming in Lisp and very useful for MaximaL, too. In addition, we will install
a special highlighting profile for MaximaL.

Install the latest version of Notepad++, 64 bit, in the default directory C:/Program
Files/Notepad++. We will soon need it. Make it the default program to open files
of type .lisp, .mac, .txt, .sbclrc, .emacs, etc., whenever you open any of these file
types later.

A highlighting profile for Maxima, which recognizes our amended functions, is avail-
able at http://www.roland-salz.de/html/maxima.html. To download it, rightclick on
Maxima_Notepad++.xml and "Save as" Maxima_Notepad++.xml. To install it from
Notepad++, select Language/Select your language/Import. After restarting Note-
pad++, Maxima will appear in the language menu and automatically be applied to
.mac files.

37.4 7zip

Install 7zip, because you will need to unzip .tar.gz files soon.

218

https://notepad-plus-plus.org/
http://www.roland-salz.de/html/maxima.html

37.5 SBCL: Steel Bank Common Lisp

A considerable number of Lisp compilers is available, and Maxima supports many
of them. The Windows installer comes with SBCL and Clisp. Independently of this,
we use SBCL for a number of reasons. It is fast, provides a wide range of facili-
ties, usually creates no problems with Maxima and has become a kind of de facto
standard for Common Lisp use. See the SBCL User Manual for reference. [SbclMan17]

In principle we can use the SBCL installation coming with the Maxima installer as
inferior Lisp under Emacs, too. However, we can also install SBCL separately in
addition, for instance if we want to use a different (newer) version or if we want to
be independent of what happens to come with the consecutive installers. We prefer
the latter option.

37.5.1 Installation

Install the latest version of SBCL in the default directory, that is in C:/Program
Files/Steel Bank Common Lisp/<version>. The Windows path and the environment
variable SBCL_HOME will be created automatically for our active Windows user, if
they don’t exist yet. However, a Windows restart is necessary to activate them.
Check that they are properly set with left click on Dieser PC, properties, Erweiterte
Systemeinstellungen, environment variables, looking at the lower field for our ac-
tive Windows user. We should see appended at the end of the path variable the
path

C: \ Program Fi les \ Steel Bank Common Lisp \1 .4 .2 \ .

In addition, we should see the environment variable SBCL_HOME with the value

C: \ Program Fi les \ Steel Bank Common Lisp \1 .4 .2 \ .

If, later under Emacs, we want to use the separately installed SBCL and the one
from the Maxima installer alternately, we do not need to change the Windows en-
vironment variables any more. Instead, the local copies of them, which Emacs
actually uses, can be adjusted easily in the .emacs init file, see section 37.6.3.2.

SBCL uses this environment variable to locate the folder where to search for its core
file. If the folder does not match the SBCL version that was invoked with the .exe
file, a severe error situation will arise and it will not be able to start SBCL.

To update the SBCL version, just execute the new SBCL installer. We do not need
to deinstall the old one first. A subfolder with the new version will be created and
the Windows environment variables will be adjusted automatically. We only need
to adapt our personal setup and initialization files (e.g. .emacs, see below).

37.5.2 Setup

37.5.2.1 Set start directory

The directory from which SBCL is started is called the SBCL start directory. The
SBCL system variable *default-pathname-defaults* will be set to this directory and
make it the so-called current directory. This will be the default path for file loads
from within SBCL. Note that relative paths can be used on the basis of the current

219

directory, and the standard file extension .lisp can be omitted. This also works
under Maxima, if a Lisp load command is executed, e.g.

: l i sp (load "System/Emacs/ startswank")

However, if we load with the Maxima command, we can use relative paths, too, but
we have to include the file extension .lisp

load ("System/Emacs/ startswank . l i sp ")

37.5.2.2 Init file ".sbclrc"

A Lisp init file named ".sbclrc" can be created. It will be loaded and executed every
time SBCL starts. Unfortunately, this file has to be placed in two different locations:

C:/Users/<user>
for wxMaxima, xMaxima, the Maxima console under Windows and the SBCL console
(64 bit) under Windows.

C:/Users/<user>/AppData/Roaming
for all applications under Emacs and for the SBCL console (32 bit) under Windows.

In order to find out where the init-file is supposed to be for a specific SBCL applica-
tion, use one of the following commands from within the particular application:

(sb−impl : : userinit−pathname)
(funcal l sb−ext :*userinit−pathname− function*)

If it is a Maxima application, simply preceed each Lisp command by ":lisp " at the
Maxima prompt:

: l i sp (sb−impl : : userinit−pathname)
: l i sp (funcal l sb−ext :*userinit−pathname− function*)

The copies from both directories can be loaded into Notepad++ simultaneously
under identical file names; as you will soon see, we will introduce a tiny difference
between the two copies.

For our Maxima Lisp developer’s environment this file should contain the following
forms. The complete model file can be found in Annex B.

1. The following lines are inserted automatically by (ql:add-to-init-file). They will
cause Quicklisp to be loaded on each start of SBCL.

#−quicklisp
(let ((quickl isp− init (merge−pathnames "C: / quicklisp / setup . l i sp " (

user−homedir−pathname))))
(when (probe− file quickl isp− init)
(load quickl isp− init)))
(format t "~%~a" "Quicklisp loaded . ")

2. Set compiler option for maximum debug support:

(declaim (optimize (debug 3)))
(format t "~%~a" " (declaim (optimize (debug 3))) set . ")

3. Set external format to UTF-8:

220

(setf sb−impl : : * default−external− format* : utf−8)
(format t "~%~a" "External format set to UTF−8. ")

4. Display final messages:

(format t "~%~a" " In i t− Fi le C: / Users/<user>(/AppData/Roaming) / . sbclrc
completed . ")

(format t "~%~a~a" "Current directory (also from Maxima) is " *

default−pathname−defaults*)
(format t "~%~a" "To change the current directory use (setq *

default−pathnames−default* #P\"D: /Maxima/ Builds / \ ") . ")
(format t "~%~a" "Relative paths can be used and the standard f i l e

extension . l i sp can be omitted , e .g . : (load \" subdir / subdir / filename \ ") .
")

(format t "~%~a" " ")

In the first command adjust the Windows user and include or omit the parenthesized
part, according to where the init file is placed. This way the init file will itself show
where it is located for each SBCL application. The second line will show the current
directory to the user on start of SBCL.

37.5.2.3 Starting sessions from the Windows console

We can start an SBCL session from the Windows console. Open the Windows shell
(DOS prompt), cd to what you want to have as the start directory and type SBCL.

To invoke the command history, type C-<uparrow>.

37.6 Emacs

37.6.1 Overview

Emacs is a Lisp based IDE and much more. The Emacs Manual provides an impres- [EmacsMan12]

sive description.

37.6.1.1 Editor

It’s not without reason that one generally defines

Emacs = Escape, Meta, Alt, Control, Shift.

Although the Emacs editor and in particular its embedding in the overall IDE struc-
ture has very powerful features, it will take some time to get used to it. Before
starting to work with Emacs, the Emacs Tutorial, an introduction to the editor and [EmacsTut]

the basic Emacs environment should be studied in detail. It comes with the Emacs
installation and is a plain text file of some 20 pages linked to the Emacs opening
screen. The German version of Emacs comes with a German translation.

37.6.1.2 eLisp under Emacs

Emacs is written in eLisp, a dialect of Common Lisp. eLisp must be used to program
the .emacs init file and any file to be loaded from it. But of course eLisp can also be
used under Emacs for any other purpose. Emacs supplies is with special debugging
facilities. See the extensive eLisp Manual for details. [eLispMan13]

221

37.6.1.3 Inferior Lisp under Emacs

Any other Common Lisp variant installed on the computer can be set up to be used
as inferior Lisp under Emacs. This setup is done in the .emacs init-file. We will
use SBCL. Note that inferior Lisp is independent of the Lisp used by Maxima and of
eLisp. All can be different.

The Emacs IDE can thus be used for any other Lisp development independent of
Maxima.

37.6.1.4 Maxima under Emacs

There are various Maxima interfaces that work under Emacs. We use the Maxima
console and iMaxima which provides output created with LateX.

The iMaxima interface and how to set it up under Emacs and Windows is described
in detail on Yasuaki Honda’s iMaxima and iMath website. [iMaximaHP17]

37.6.1.5 Slime: Superior Interaction Mode for Emacs

Slime is an enhancement for Emacs. It provides much more elaborate debugging
facilities and with slime-connect, see below, it allows for setting up a parallel session
of MaximaL and Maxima Lisp. See the Slime Manual for details. [SlimeMan15]

37.6.2 Installation and update

Download the preconfigured installer version emacs-w64-25.3-O2-with-modules.7z
from Sourceforge. This will set up Emacs properly with all the necessary dll files
installed in the bin directory. Unzip it with 7zip. First unzip it to C:/. Then move
the folder to C:/Program Files/Emacs (this does not work directly, because it needs
administrator approval which cannot be given during the unzip process).

Alternatively, a version with almost no dll files is emacs-25.3-x86_64.zip from the
GNU mirror.

Numerous lib*.dll files can be added to the bin directory in order to bring Emacs
to its full power (read the readme file that comes with Emacs). A large number of
them and many other dependencies (.exe files) are included in emacs-25-x86_64-
deps.zip, which also gives a complete Emacs installation.

In particular we need zlib1.dll and libpng16-16.dll, which gives support for png files,
required for the iMaxima Latex interface to work.

Run bin/runemacs.exe to start Emacs and create a shortcut for it on the desktop.

Slime has to be installed separately. We will do this with the help of Quicklisp soon.

37.6.3 Setup

37.6.3.1 Set start directory

We can set the Emacs start directory in its desktop shortcut (right click / properties
/ execute in). We use the path

D: \Programme\ Lisp

222

This will be the default path for file loads from within Emacs (by typing C-x C-f in the
mini buffer). This will also be the default for the start directory and therefore the
current directory for SBCL (in case we invoke it from within Emacs), to which the
variable *default-pathname-defaults* will be set. To show or change it from within
SBCL use

default−pathname−defaults
(setf *default−pathname−defaults* #P"D: /Maxima/Repos/ ")

If we want a different SBCL start directory than the one for Emacs, we can in start-
sbcl.bat (see below) cd to a different directory prior to invoking SBCL.

37.6.3.2 Init file ".emacs"

An eLisp init file named .emacs can be placed in C:/Users/<user>/AppData/Roaming. [EmacsMan12]

It will be loaded and executed every time Emacs starts.

Note: Under Windows it is sometimes difficult to copy/rename a file with a leading
dot. However, it can always be done with "save as" from Notepad++.

For our Maxima Lisp developer’s environment this file should contain the following
lines. The complete model file can be found in Annex C.

1. Load Quicklisp Slime Helper:

(load "C: / quicklisp / slime−helper . el ")

2. Set inferior Lisp to SBCL. We write a short Windows batch-file start-sbcl.bat which
we place e.g. in D:/Programme/Lisp/System/SBCL and which we use to start SBCL.
It allows us (by means of the Windows cd command) to preselect the start directory
for SBCL. It will be SBCL’s current directory. If we do not set the start directory in
this file, the Emacs start directory will be used as default. The batch file is

"C: / Program Fi les / Steel Bank Common Lisp /1.4.2/ sbcl .exe"
rem "C: /Maxima−5.41.0/bin / sbcl .exe"

rem Prior to cal l ing SBCL we can set the SBCL start directory .
rem I f we don’ t , the Emacs start directory w i l l be the default .
rem Example:
rem D:
rem cd /Programme/ Lisp

The above assumes that we use a separately installed SBCL. If instead we want to
use the SBCL from the Maxima installer, we have to activate the out-commented
path instead. In the init-file we write

(setq inferior− lisp−program "D: /Programme/ Lisp /System/SBCL/ start−sbcl . bat")

3. Setup Maxima. We need to load the system eLisp file setup-imaxima-imath.el [iMaximaHP17]

which comes with Maxima. Best is to create a local copy in a fixed place on our
computer, so we do not always have to adapt the path to the file if we use different
Maxima installations. This file sets up Emacs to support Maxima and the Latex-
based interface iMaxima. We do not need to customize this file. But before loading
the file we set two system variables. *maxima-build-type* specifies whether we use

223

Maxima from an installer or whether we have built Maxima from a tarball or a local
copy of the repository. *maxima-build-dir* specifies the path to the root directory
of the Maxima we want to use. If we do not specify these two system variables, the
first Maxima installer found in "C:/" will be used. (Note that this is the oldest one
installed.) So in the init-file we write

; *maxima−build−type* can be "repo− tarball " or " ins ta l le r "
(defvar *maxima−build−type* " ins ta l le r ")

; *maxima−build−dir* contains the root directory of the build ,
terminated by a slash .
(defvar *maxima−build−dir* "C: /Maxima/maxima−5.41.0/ ")
; (defvar *maxima−build−dir* "D: /Maxima/ builds /lob−2017−04−04−lb / ")

(load "D: /Programme/ Lisp /System/Emacs/setup−imaxima−imath. el ")

4. Key reassignments for Slime. In order to ease our work under Slime we change [SlimeMan15]

the keys for a number of its system functions.

(eval−after− load ’ slime
‘(progn
(global−set−key (kbd "C−c a") ’ slime−eval− last−expression)
(global−set−key (kbd "C−c c") ’slime−compile−defun)
(global−set−key (kbd "C−c d") ’slime−eval−defun)
(global−set−key (kbd "C−c e") ’ slime−eval− last−expression− in−repl)
(global−set−key (kbd "C−c f ") ’ slime−compile− file)
(global−set−key (kbd "C−c g") ’slime−compile−and− load−file)
(global−set−key (kbd "C−c i ") ’ slime− inspect)
(global−set−key (kbd "C−c l ") ’ slime− load− file)
(global−set−key (kbd "C−c m") ’slime−macroexpand−1)
(global−set−key (kbd "C−c n") ’slime−macroexpand−all)
(global−set−key (kbd "C−c p") ’ slime−eval−print− last−expression)
(global−set−key (kbd "C−c r ") ’slime−compile−region)
(global−set−key (kbd "C−c s") ’slime−eval−region)
))

5. Customizing Emacs. Emacs can be extensively customized. The changes made [EmacsMan12]

are stored automatically at the end of ".emacs". For example, the following code
will be inserted when we do
M-x customize, Editor, Basic settings, Tab width, default 8 -> 2, Save.

(custom−set−variables
; ; custom−set−variables was added by Custom.
; ; I f you edit i t by hand, you could mess i t up, so be careful .
; ; Your i n i t f i l e should contain only one such instance .
; ; I f there is more than one, they won’ t work right .
’ (safe− local−variable−values (quote ((Base . 10) (Syntax . Common−Lisp) (

Package . Maxima))))
’ (tab−width 2))
(custom−set−faces
; ; custom−set−faces was added by Custom.
; ; I f you edit i t by hand, you could mess i t up, so be careful .
; ; Your i n i t f i l e should contain only one such instance .
; ; I f there is more than one, they won’ t work right .
)

224

37.6.3.3 Customization

In Emacs Options/Set Default Font set Courier New size to 12. Store this with Save
Options, so I don’t have to set it again on every start of Emacs. This will be written
automatically into the .emacs file.

37.6.3.4 Slime and Swank setup

A special setup is necessary for running Maxima or iMaxima under Emacs with
Slime. We have to write a short Lisp program named startswank.lisp and place it
e.g. in

D: /Programme/ Lisp /System/Emacs

This is the code

(require ’asdf)
(pushnew "C: / quicklisp / dists / quicklisp / software /slime−v2.20/ " asdf :*

central− registry *)
(require :swank)
(swank: create−server : port 4005 : dont−close t)

37.6.3.5 Starting sessions under Emacs

To start a Lisp session under Emacs without Slime, type Alt-X and then in the
minibuffer run-lisp or inferior-lisp.

The error message spawning child process is a typical sign of SBCL searching in the
wrong directory for its core file. Check that the path specified in start-sbcl.bat is
correct. Check that the Windows environment variables of the current user (PATH
and SBCL_HOME) are properly set, see above.

To invoke the command history under SBCL, type Ctrl-<uparrow>.

To start a Lisp session under Emacs with Slime, type Alt-X and then in the minibuffer
slime. The screen will split and the Slime prompt will show up.

To start a console Maxima session under Emacs without Slime, type Alt-X and then
in the minibuffer "maxima".

To start an iMaxima session under Emacs without Slime, type Alt-X and then in the
minibuffer "imaxima".

To start a console Maxima or iMaxima session under Emacs with Slime, proceed as
follows

1. Start Maxima or iMaxima under Emacs as described above.

2. At the Maxima prompt, enter

load ("System/Emacs/ startswank . l i sp ") ;

3. If the load succeeded, type Alt-X and then in the minibuffer "slime-connect".

4. At the message Host: 127.0.0.1 hit return in the minibuffer.

5. At the message Port: 4005 again hit return in the minibuffer.

225

Now the Emacs screen splits and a new window is opened with a prompt Maxima>.
This is a Lisp session under Slime inside of the running Maxima session. All Maxima
variables and functions can be addressed from it. This Emacs buffer can be used to
debug or make modifications to the Maxima source code while Maxima is running.
We can switch back and forth between the Maxima-Lisp and the Maxima-MaximaL
windows by "Ctrl-x o" and enter input in both. The first time we switch back to
the MaximaL window, there will be no Maxima prompt visible. Nevertheless, we
can enter something followed by a semicolon, e.g. "a;" and the input prompt will
reappear. Note that MaximaL variables have slightly different names under Lisp:
they have to be preceeded by a "$" character, so e.g. the variable "a" has to be
addressed as "$a" from the Lisp window. And as always in Lisp, commands are not
terminated by a semicolon as they are in MaximaL.

It should be noted here that we won’t have Slime’s full functionality unless we use
a Maxima built by ourselves. See chapter 39 for how this is done. Then, if the build
succeeded, set up Emacs to use this build. Only this will allow Slime to interactively
find the source code of Maxima functions while Maxima is running in parallel with a
Lisp session under Emacs.

37.7 Quicklisp

Quicklisp is a Lisp library and installation system. It runs under Lisp, so we will
install it and use it from SBCL. A good introduction and instruction how to use it can
be found at https://www.quicklisp.org/beta/. We will soon use Quicklisp to install
Slime.

37.7.1 Installation

Quicklisp will be installed via our Lisp system, which is SBCL. Download the file
quicklisp.lisp from the Quicklisp homepage. Start SBCL from the Windows console
by typing "SBCL" at the DOS prompt. See that you are connected to the internet.
Then, at the SBCL prompt, enter the following Lisp commands one by one. This will
install Quicklisp in "C:/Quicklisp". Don’t install it in the program files subdirectory,
because Quicklisp does not like blanks in the filename. Then Quicklisp is loaded
and some code is added to our .sbclrc init-file, see section 37.5.2.2, in order for
Quicklisp to be loaded automatically whenever we start SBCL.

(load "C: / Users/<user>/Downloads/ quicklisp . l i sp ")
(quicklisp−quickstart : i n s ta l l : path "C: / Quicklisp / ")
(load "C: / Quicklisp / setup . l i sp ")
(ql : add− to− init− file)

If in the future we want to update our quicklisp installation, all we have to do is
(from SBCL)

(ql : update−client)
(ql : update−dist " quicklisp ")

Now that we have installed Quicklisp, we stay in SBCL to continue with installing
Slime.

226

https://www.quicklisp.org/beta/

37.8 Slime

If we install Slime via Quicklisp (alternatively it can be installed from Melpa), it will
be stored inside of C:/Quicklisp. Under SBCL, execute the following Lisp forms one
by one. This will install Slime including the Swank facilities. The last form will install
slime-helper.el and add some code to our .emacs init file, see section 37.6.3.2, in
order to load it and facilitate working with Slime. See http://quickdocs.org/quicklisp-
slime-helper/.

(ql : update−client)
(ql : update−dist " quicklisp ")
(ql :system−apropos "slime")
(ql : quickload "swank")
(ql : quickload "quicklisp−slime−helper")

We can check which version we have installed by looking at
C:/Quicklisp/dists/quicklisp/software. We should find a folder here named slime-
v2.20.

If we want to update an existing Slime installation, we follow exactly the same
procedure as described above. A subfolder with the new version will be installed.
It is not necessary to uninstall the old one. We only have to adapt the paths in our
personal setup and initialization files (e.g. in startswank.lisp, see below).

37.9 Asdf/Uiop

ASDF (Another system definition facility) is a Lisp build system. See https://common-
lisp.net/project/asdf/ for a description. UIOP is an extension of ASDF which signifi-
cantly enhances Common Lisp’s functionality. For instance, it emulates file handling
procedures for Windows.

37.9.1 Installation

Our Quicklisp installation comes with a Lisp source file asdf.lisp in the main folder.
But Asdf/Uiop is already included in our SBCL installation, too. Here, in the contrib
folder, we find the compiled files asdf.fasl and uiop.fasl. These are the files used by
SBCL. It is important to have the latest possible version of Asdf/Uiop installed here.
To find out which version we have in our SBCL installation, we can do from SBCL

(require ’asdf)
asdf : : * asdf−version*

"3.3.1"

The version of the asdf.lisp in our Quicklisp installation can be found in the source
code itself. Just open the file with Notepad++. It turns out to be much older, in our
case it is 2.26. We continue our investigations from SBCL:

(ql : update−client)
(ql : update−dist " quicklisp ")
(ql :system−apropos "asdf")

tells us that the Quicklisp library has version 3.3.1 available. Finally, we take a look
at the Asdf homepage and find out that the latest released version is 3.3.2. So we

227

https://common-lisp.net/project/asdf/
https://common-lisp.net/project/asdf/

download the corresponding asdf.tar.gz and unpack it with 7zip (This goes in two
steps: first we unzip the .tar.gz, then the resulting .tar). In addition, we download
the latest asdf.lisp file from the Asdf archive. Oops, if we just click on the file, we
get one very long string without any line breaks. But what we want can be done in
the following way: rightclick on the file in the archive, select "save as" and set the
file name to asdf.lisp. Then we open the file with Notepad++. Now we have the
correct Windows line endings (CR/LF instead of Unix LF only)! What we want to do
now is compile this file ourselves to create the asdf.fasl (which should include Uiop
as well and) which we will insert into our SBCL/contrib folder to replace the existing
version. We always save the existing versions, of course, by renaming them. Let’s
assume the asdf.lisp is in the downloads folder. Then we continue with SBCL

(compile− file "C: / Users/<user>/Downloads/ asdf . l i sp ")

and wait patiently until the compilation process is finished. Check that there were
no error conditions. We got three, so we fall back to asdf 3.3.1. With this version,
compilation was successful. Now the asdf.fasl file should be in the download folder,
too. We copy it into the folder Program Files/Steel Bank Common Lisp/1.4.2/contrib.
Then we leave SBCL by entering (quit), start it again from the Windows DOS prompt
and continue with checking

(require ’asdf)
asdf : : * asdf−version*

"3.3.1"

It is obvious how we have to install a possible update later.

Note: We experienced that loading startswank.lisp from a (i)Maxima session under
Emacs does not work with our sbcl 1.4.2 using its original asdf 3.3.1 nor with our
self-compiled asdf 3.3.1. With our sbcl 1.3.18 it works with its original asdf 3.1.5,
but not with asdf 3.3.1.

37.10 Latex

We need to have a Latex installation on our system if we want to use the iMaxima
interface, which runs under Emacs and gives LateX output.

37.10.1 MikTeX

MikTeX provides the Latex environment needed for iMaxima. This is a very compli-
cated system, and it is important to follow the installation instruction carefully.

Download the latest version from miktex.org. Execute the program as administrator
(Rightclick). Install MikTeX in the default directory C:/Program Files/MikTeX 2.9. Load
packages on the fly: "yes". If during installation your antivirus program complains,
ignore it this time and continue the installation.

For maintenance always use the subdirectory Maintenance(Admin). After the instal-
lation, open the MikTex packet manager from the MikTeX 2.9/Maintenance(Admin)
directory in the program menu. Install packages mhequ, breqn, mathtools, l3kernel,
unicode-data. These files are needed for iMaxima. Immediately run Update from
Maintenance(Admin), too, and install all the available updates proposed.

228

37.10.2 Ghostscript

Ghostscript is needed for iMaxima, too.

Install Ghostscript in the default directory C:/Program Files/gs. An overview about
the software is to be found under C:/Program Files/gs/gs9.21/doc/Readme.htm.

37.10.3 TeXstudio, JabRef, etc.

TeXstudio is not needed for iMaxima, but it is a nice LateX editor which runs on top
of MikTeX. This documentation was written with TeXstudio. The author wishes to
thank the TeXstudio team for the kind help and support.

Note that the wxMaxima interface provides nice LateX output via the context menu.

Install TeXstudio in the default directory C:/Program Files (x86)/TeXstudio. Set biber
to be the standard bibliography program.

JabRef is a nice program to maintain a larger bibliography. Personally, we prefer
to edit the .bib file with Notepad++, however, and use JabRef only to display the
result and do searches in it.

37.11 Linux and Linux-like environments

37.11.1 Cygwin

Install Cygwin in C:/Program Files/cygwin64.

37.11.2 MinGW

Install MinGW in C:/Program Files/MinGW.

37.11.3 Linux in VirtualBox under Windows

37.11.3.1 VirtualBox

37.11.3.2 Linux

229

Chapter 38

Repository management: Git
and GitHub

38.1 Introduction

This chapter follows up on the discussion of section 36.5.

38.1.1 General intention

Let us briefly preview why we use Git and GitHub and what we want to do with
them. We will create a local Maxima repository on our computer in order to be able
to look at the Maxima source code files and to modify or enhance them. But we will
not only make our own changes, we will also continuously update our local mirror
by downloading all modifications done to the Maxima code base at Sourceforge. It
is only with the help of Git that we will be able to merge (or, as we will see, rebase)
our code modifications with/onto the ones being done in parallel at Sourceforge.
This will allow us to modify the Maxima code according to our needs without losing
the bug fixes, modifications and enhancements done by the Maxima team at the
same time.

On GitHub we will create a mirror from Sourceforge once, too, but then we will not
update it directly from Sourceforge, but instead from our local repository. So it will
mirror both the branches from Sourceforge and our own ones. It will publish the
changes that we have done to the code and which are, as we saw, always based on
the latest updates done at Sourceforge.

The changes we make in our local repository can be incorporated in our own Maxima
builds.

38.1.2 Git and our local repository

The repository on Sourceforge works under the version control system Git. In or-
der to create a local copy and to facilitate successive downloading of the latest
snapshots, we need to install Git on our system, too.

If we have write access rights to the Sourceforge repository, we also use Git to send
our commits.

A good introduction to Git is the book ProGit by Scott Chacon which is available as [ChProGit14]

230

PDF in the net for free. All the details you ever want to know can be found in the
Git Online Reference. It should also be mentioned that almost any special question [GitRef17]

around Git has already been asked on Stackoverflow.

38.1.2.1 KDiff3

We will use KDiff3 to help us resolve merge conflicts arising under Git when we
rebase our own changes onto the original branches from the Sourceforge repository.

38.1.3 GitHub and our public repository

We can work with a local repository on our computer only. If in addition we want
to make public our work or cooperate with others outside of Sourecforge, we can
create a public copy of our local repository (which started from a copy of the Source-
forge repository). This can be done for instance on GitHub. We will explain how a
copy (it is called a mirror) of the Maxima repository can be created on GitHub and
how we can then synchronize it with our work coming from the local repository.

Eventually we can also use our GitHub repository to communicate with the Max-
ima external packet manager system, if we want to make our packages directly
accessible to Maxima users.

38.2 Installation and Setup

38.2.1 Git

38.2.1.1 Installing Git

Download the latest Windows installer from git-scm.com. Install it as administra-
tor in the default directory C:/Program Files/Git with the default settings. But for
the default editor select Notepad++. In particular, we want to be sure to use the
recommended option to check out files in Windows style (with CR/LF ending) and
commit files in Unix style (with LF ending). Also, as the default says, install the TTY
console.

Create shortcuts on the desktop from the program menu. We can use the CMD
interface which resembles the Windows console. But we prefer Git bash which
has the advantage of always displaying the branch we are on. In order to set
our start directory to D:/Maxima/Repos do the following. Rightclick on the desktop
shortcutof CMD or Git bash. Select properties. Change Execute in to the above
path. In Destination delete the option -cd-to-home. It might be necessary to restart
the computer for the changes to take effect. 1

38.2.1.2 Installing KDiff3

Install the 64bit version of KDiff3 with the defaults in the default location.

1RS only: When CMD is started, rightclick on the upper margin of the window and in properties set
font size to 20. For Git bash, rightclick on the upper margin of the window and set options/text/font
to Courier new, size 14.

231

38.2.1.3 Configuring Git

Git allows configuration at various levels: system, user, project. Configuration files
are therefore created in various locations. In C:/Users/<username>/ we place the
file .gitconfig given in Annex D, after having done our personal adjustments to it.

Most important is to substitute your name and email. We have also specified the
text editor to be used for commit messages and the merge tool. The autocrlf com-
mand allows for the correct transformation of line endings from Unix to Windows
and vice versa. The whitespace command causes git-diff to ignore "exponentialize-
M" characters. In addition we have defined some shortcuts for the most frequent
commands (st, ch, br, logol). With

git config −−global −−edit

from the Git prompt (note the blank and the double dashes before each option)
Notepad++ should open and display the file .gitconfig.

There is a known problem with Git not handling UTF-8 characters correctly, for in-
stance when displaying committ messages which contain German umlauts in the
name of the committer, see stackoverflow. We want to apply the proposed solu-
tion and create a Windows environment variable LC_ALL which we assign the value
C.UTF-8. Don’t define it under "‘Admin"’, but under "‘System variables"’. This defi-
nition will solve the problem permanently for both Git CMD and Git bash.

38.2.1.4 Using Git

Under Git bash, directory paths are written like e.g. /d/maxima/repos. Changing
the current directory is done with e.g. cd /c/users/<username>.

38.2.2 GitHub

38.2.2.1 Creating a GitHub account

On GitHub, presently (Dec. 2017), it is free of charge to open a personal account
and create public repositories within it. Public here means that we cannot hide
the source code of our repositories. Everyone else can see it and clone it. This is
independent of whether we use the repository alone or together with others. In the
latter case we can give explicit permission to individual other GitHub users to have
write access to our repository.

So the first step is to sign up in GitHub. We create a personal account by assigning
a user name and password and providing an email address for communication. All
other settings we can do later. It is always possible to change any settings at any
time. Even the user name can be changed, but it is not advisable to do so, because
this change can never be done to 100 percent. It is easily possible to delete the
account, too.

On the next screen we select the option Unlimited public repositories for free. On
the following screen, let us Skip this step. Next, instead of Read the guide or Start
a project, we move directly to our profile and use it as a starting point for creating
our Maxima repository. So in the upper right corner we click on the little triangle to
the right of the avatar symbol and select Your profile. We create a browser favorite

232

https://stackoverflow.com/questions/41139067/git-log-output-encoding-issues-on-windows-10-command-prompt

which leads us to this page, because everything else will start from here. Just to
give you a glimpse at how we will continue: click on the little triangle to the right of
the "+" sign in the upper right corner and you will see the options New repository
and Import repository which we will soon make use of.

We will use only plain command line Git to communicate with our GitHub reposito-
ries. There are special programs from GitHub to do so, too, e.g. the GitHub desktop,
but in our opinion it is a waste of time and effort to learn them. Git is the underlying
software in any case and in order to have full control of what we want to do, we
better stay at this ground level. Every other program on top of it will hide informa-
tion from us that at one point or another we will urgently need in order to make
Git do exactly what we want. This can be complicated at times, we need to learn a
number of Git commands, but there is no way around it.

38.3 Cloning the Maxima repository

38.3.1 Creating a mirror on the local computer

This process is called cloning. Let’s assume we are in our directory D:/Maxima/Repos
and want to place the copy of the repository in a subfolder named Maxima. We look
at the Maxima domain at Sourceforge https://sourceforge.net/p/maxima/code/ci/master/tree/
to find out what the download URL of the git repository is. We select the https ac-
cess rather than the git:// access. Then we enter at our Git prompt

git clone https : / / g i t . code . sf . net /p/maxima/code rMaxima

where rMaxima ist our destination subfolder. And now we wait patiently until the
latest snapshot (meaning: the actual status) of the Maxima repository from Source-
forge has been completely copied.

38.3.2 Creating a mirror on GitHub

We will clone the Maxima repository from Sourceforge to our account on GitHub in
a similar way as we cloned it to our local computer. But once we have done that,
we will update our GitHub repository only via our local repository. This includes all
changes made to the Maxima repository on Sourceforge. We will download them
periodically to the local repository and upload them from our local repository to
the GitHub repository. So in effect, our GitHub repository is only going to be a
direct mirror of Sourceforge in the beginning. After this initialization, the GitHub
repository will rather be a mirror of the repository on our local computer. It will
reflect the work that we have done on our local repository and at the same time
incorporate the changes done at Sourceforge.

We click on the little triangle to the right of the "+" sign in the upper right corner
of our GitHub user profile, then select Import repository. We have to specify the
URL of the source repository at Sourceforge (called the old repository on the GitHub
screen) which is still

https : / / g i t . code . sf . net /p/maxima/code

233

https://sourceforge.net/p/maxima/code/ci/master/tree/

and then a name for the mirror on our GitHub account, let’s say "rMaxima", too.
Then we click on Begin import. The import from Sourceforge to GitHub can take a
couple of minutes.

Once we have receivd the email notification about our mirror having been success-
fully installed on GitHub, we go to our account profile again and Customize our
pinned repositories by selecting our new repository Maxima. Now it will be visible
on our account profile and we can always find it and move to it easily. On selecting
our new repository, a short description of it can be given which will be displayed on
the acount profile together with its name.

38.4 Updating our repository

38.4.1 Setting up the synchronization

Soon there will be new commits submitted at the Sourceforge repository by mem-
bers of the Maxima team, and we will want to download them. Together with the
changes we make ourselves we will want to push them to our GitHub mirror. So
what we want to do now is prepare for updating our local repository from Source-
forge and our GitHub repository from our local repository.

38.4.2 Pulling to the local computer from Sourceforge

Let’s first look into our local repository. We start Git CMD and cd to D:/Maxima/Repos
/rMaxima. Then we enter

git remote show origin

In Git, origin is the shortname of our source repository, which is Maxima at Source-
forge. The above command gives us an overview of what branches exactly we’ve
just cloned from there.

The most interesting of the remote branches we see is master. It is the official,
the decisive, the relevant branch with the actual status of the Maxima repository
at Sourceforge. Our local branch master corresponds to it. Our local master shall
always be a true copy of the present status at Sourceforge. So we never com-
mit changes to it, we only use it for pulling from Sourceforge and for pushing the
changes which come from Sourceforge to our Maxima repository at GitHub. Our
own work we will do on other branches which we create from our local branch mas-
ter.

Updating our local master branch from Sourceforge is simply done by

git ch master
gi t pul l

Note that we use the shortnames defined in .gitconfig, see. Annex D. With the
option pull −−all, not only master, but all tracked branches will be pulled (i.e. up-
dated) from origin into their respective local branches. When using these com-
mands for the first time or after a long time of not having used them, they can take
a while, because Git does a lot of checking in the background, so be patient.

234

New branches on Sourceforge will be shown in the list by the remote show origin
command, marked as new. On the next git pull they will automatically be tracked.
Branches deleted on Sourceforge will be marked in the list as stale. They will not
be deleted automatically by pull, instead we have to remove them manually with

git ch master
gi t remote prune origin

38.4.3 Pushing to the public repository at GitHub

First we create the shortname github on our local machine for our rMaxima reposi-
tory at GitHub by associating it with the URL of our GitHub repository:

git remote add github https : / / github .com/<username>/rMaxima. gi t

Then we take a look at our GitHub repository, as it is mirrored on our local machine,
by entering

git remote show github

Just as our local master shall always be a true copy of master at Sourceforge, our
master at GitHub shall always be a true copy of our local master. Updating master
on GitHub from our local master is done by

git ch master
gi t push github

In this proces we might be asked to enter our GitHub username and password. With
the option push github −−all, all local branches configured for push (see list remote
show github) will be pushed to GitHub. In order to configure a branch for push
to GitHub or to forward a new (e.g. release) branch from Sourceforge to GitHub,
we have to track the branch first in our local repository, done with the checkout
command, and then push it to GitHub:

git ch <name of new branch>
git push github <name of new branch>

In the push command the name of the branch is not necessary, if we are on this
branch already. If we want to delete a branch from GitHub, for instance because it
has been deleted from Sourceforge, we do

git push github −d <name of branch to be deleted>

To update the repository completely with all branches from Sourceforge after a year
or more, it is easiest to delete the GitHub repository, clone it newly and push all my
own branches again.

38.5 Working with the Repository

38.5.1 Preamble

Git is a very intelligent program. It is most important for the user to know that
under Git what we see in the Windows directories is not what is physically there,
but what Git virtually shows us. The contents of what we see of the repository in
Windows explorer depends on what Git branch we are currently in. Branches do not

235

correspond to Windows explorer directories! What branch we are in, can only be
seen in Git itself, not in the explorer. Changes to files in one branch, even addition
and deletion of files, will not be visible in the same Windows folder any more, if
we switch to another branch where these changes have not been incorporated. Be
sure to have understood that very clearly before working with Git. This will prevent
you from some severe headaches (you will probably get others with Git at some
point or another anyways).

38.5.2 Basic operations

We get a list of all our local branches with

git br

To see the status of the current branch, type

git st

We can create a new branch from an existing one and switch to it by doing

git ch <name of the branch we want to branch from>
git ch −b <name of the new branch>

In order to obtain a compact log output of the last n commits we can type

git logol −n

38.5.3 Committing, merging and rebasing our changes

236

Chapter 39

Building Maxima under
Windows

39.1 Introduction

In this section we show how Maxima can be built on the local computer under the
Windows operating system. Maxima is primarily designed for Unix-based operat-
ing systems, especially Linux. Sophisticated system definition and build tools are
employed to automate as much as possible the complicated build process. Since
these tools (in particular GNU autotools) are not available under Windows, there are
two ways how Maxima can be built here. The first one makes use of the Unix-based
tools and thus needs an environment which supports them. Such an environment is
Cygwin, a Unix-like shell running under Windows and in which Windows executables
can be produced. The second one does not use the Unix-based build tools at all,
but an (almost) purely Lisp-based method. It can be accomplished under the plain
Windows command line shell. All we need is a Lisp system installed. Since this is
the simpler and easier method, we demonstrate it first. Note however, that not all
Maxima user interfaces and features are supported with this build.

39.2 Lisp-only build

39.2.1 Limitations of the official and enhanced version

The official Lisp-only build process is described in the text file INSTALL.lisp which can
be found in the main folder of any release tarball or the repository. This procedure
has the following limitations:
- XMaxima cannot be built.
- wxMaxima is not included.
- GNUplot is not included.
- the documentation cannot be built.

We have made some enhancements to this procedure. In the following we give a
complete description of the revised procedure. Now the documentation can be built
with the exception of the PDF version.

We can build Maxima from a release source code tarball or from the latest repository
snapshot. The following recipe comprises both alternatives.

237

39.2.2 Recipe

1. Install the Windows installer of the latest release in C:/Maxima/maxima-5.41.0.
Download the source code file maxima-5.41.0.tar.gz of the latest Maxima release
from https://sourceforge.net/projects/maxima/files/Maxima-source/5.41.0-source/ and
extract the tarball with 7zip in the folder D:/Maxima/Tarballs/.

2. Create the directory of the new build and name it appropriately, e.g. D:/Maxima/
Builds/<lob-2017-12-09-lb>, now called the build directory.

3. Depending on what to build from,
3a. either copy the extracted source code from the release tarball into the build
directory; or
3b. select the branch of the local repository D:Maxima/Repos/rMaxima from which
to build. Pull master and rebase this branch on master first in order to have our
changes rebased on the latest Git snapshot from Sourceforge. Copy the selected
branch into the build directory.
3c. In both cases, copy the PDF version of the documentation, the file maxima.pdf,
from the subfolder share/doc of the Windows installer into the subfolder doc/info of
the build directory.

4. The tarball contains the complete documentation of the latest release with the
exception of the PDF version. In case the documentation shall not be built (also if
we build from a repository snapshot), it can be simply be copied from the tarball
into the build directory:
4a. For the online help system: From doc/info take maxima-index.lisp and all files
.info and copy them into doc/info of the build directory.
4b. For the html version: From doc/info take all files *.html and copy them into
doc/info of the build directory.

5. Now we use Lisp. The following steps can be executed either using SBCL form a
Windows command line shell or under Emacs/Slime (Note, however, that dumping
can be done only from the Windows command line!): 5a. Open a Windows com-
mand shell and cd to the top-level of the build directory (i.e., the directory which
contains src/, tests/, share/, and other directories). Then launch SBCL. Alternatively,
5b.

39.3 Building Maxima with Cygwin

238

https://sourceforge.net/projects/maxima/files/Maxima-source/5.41.0-source/

Part XI

Maxima’s file structure, build
system

239

Chapter 40

Maxima’s file structure:
repository, tarball, installer

240

Chapter 41

Maxima’s build system

241

Part XII

Lisp program structure (model),
control and data flow

242

Chapter 42

Lisp program structure

42.1 Supported Lisps

243

Part XIII

Appendices

244

Appendix A

Glossary

A.1 MaximaL terminology

In this section we define the terminology needed to describe MaximaL. Sometimes
this terminology is semantically close to the terminology used in Lisp, which will be
given in the next section.

Argument

If a function f has been defined with parameters, a function call of f has to be sup-
plied with corresponding arguments. When f is evaluated, arguments are assigned
to their corresponding parameters. For the distinction of required and optional ar-
guments, see section 31.2.3.

Array

An array is a data structure ...

Assignment

Binding a value to a variable. This is done explicitly with the assignment operator.
The value can be a number, but also a symbol or an expression. In an indirect
assignment, done with the indirect assignment operator, not a symbol is bound
with a value, but the value of the symbol, which must again be a symbol, is bound.

Atom

An atom is an expression consisting of only one element (symbol or number).

Binding

A binding ...

Canonical rational expression (CRE)

A canonical rational expression is a special internal representation of a Maxima
expression. See section 9.2.3.

Constant

There are numerical constants and symbolical constants. A number is a numerical

245

constant. Maxima also recognizes certain symbolical constants such as %pi, %e and
%i which stand for π, Euler’s number e and the imaginary unit , respectively. For
Maxima’s naming conventions of system constants see section 3.4.2.2. Of course
the user may assign his own symbolical constants.

Equation

An equation is an expression comprising an equal sign =, one of the identity oper-
ators, as its major operator. An unequation is an expression with the unequation
operator # as its major operator.

Expression

Any meaningful combination of operators, symbols and numbers is called an ex-
pression. An expression can be a mathematical expression, but also a function call,
a function definition or any other statement. An expression can have subexpres-
sions and is build up of elements. An atom or atomic expression contains only one
element. A complete subexpression ... See subst (eq_1, expr) for an example.

See also lambda expression.

Function

A function is a special compound statement which is assigned a (function) name,
has parameters and in addition can have local variables. Maxima comprises a large
number of system functions, as for instance diff and integrate. Furthermore, the
user can define his own user functions. A special operator, the function definition
operator :=, is used for this purpose. On the left hand side, the function name
and its parameters are specified, while on the right hand side, the function body.
Alternatively, function define can be used.

On calling a function, arguments 1are passed to it which are assigned to the func-
tion’s parameters at evaluation time. The result of the function’s subsequent com-
putations, i.e. the evaluation of the function, is returned. We speak of the return
value of a function call. A function call can be incorporated in an expression just
like a variable. An ordinary function is evaluated on every call, see section 31.2.3.

An array function stores the function value the first time it is called with a given
argument, and returns the stored value, without recomputing it, when that same
argument is given. Such a function is known as a memoizing function, see section
31.2.4.

A subscripted function is a special kind of array function which returns a lambda
expression. It can be used to create a whole family of functions with a single defi-
nition, see section 31.2.5.

In addition there are functions without name, so-called lambda functions or anony-
mous functions, which can be defined and called at the same time. Their return
value is called a lambda expression. See section 31.3.

1Instead of parameter and argument, the terminology formal argument and actual argument is
used in the Maxima Manual.

246

A macro function is similar to an ordinary function, but has a slightly different be-
havior. It does not evaluate its arguments and it returns what is known as a macro
expansion. This means, the return value is itself a Maxima statement which is
immediately evaluated. Macros are defined with the macro function definition op-
erator ::=.

An undeclared function is just a symbol which stands for a function, possibly fol-
lowed by one or more arguments in parentheses. It has not been declared with a
function definition. It is not bound. On calling it, it evaluates to itself. However,
for the purpose of differentiation, dependencies of the function on certain variables
can be declared with depends.

Lambda expression

The return value of a lambda function is called a lambda expression. See section
31.3.

Macro expansion

Macro expansion is part of the mechanism of a macro function.

Operator

A Maxima operator can be view in a way similar to a mathematical operator. The
arithmetic operators +, -, *, /, for example, are employed in an infix notation just as
in mathematics.

The equal sign =, the assignment : or the function definition := are examples of
other Maxima system operators.

Maxima even allows the user to define his own operators, be they used in prefix,
infix, postfix, matchfix or other notations.

Parameter

A parameter is a special local variable defined for a function, which is assigned the
value of a corresponding argument at function call.

Pattern matching

For the definition see section 14.1.1.

Predicate

A predicate is an expression returning a Boolean value. This may be a function or a
lambda expression with a Boolean return value, a relational expression evaluated by
is, or the Boolean constants true and false. For a match predicate see matchdeclare.

Property

A MaximaL property ... A Lisp property ...

Quote-quote ’ ’ is twice the quote character, not the doubel-quote ” character.

Rule

247

A rule ...

Scope

We distinguish dynamic scope from lexical scope...

Symbol, identifier

Maxima allows for symbolical computation. Its basic element is the symbol, also
called identifier. A symbol is a name that stands for something else. It can stand
for a constant (as we have seen already), a variable, an operator, an expression, a
function and so on.

Statement

An input expression terminated by ; or $ which is to be evaluated is called a state-
ment. In Lisp it would be called a form.

If a number of statements are combined, e.g. as a list enclosed in parentheses and
separated by commas, called a sequential, we speak of a compound statement. The
statements forming a compound statement are called its sub-statements. Block
and function are other special forms of a compound statement. A block is a com-
pound statement which can have local variables, a function is assigned a name and
can have parameters, see chapter 31.

Value

A symbol (i.e. a variable, a constant, a function, a parameter, etc.) can be unbound;
then it has not been assigned a value. When a value has been assigned to the
symbol, it is bound. Binding a value to a symbol is called assignment. Retrieving
the value of a symbol is called referencing or evaluation.

The return value is what a function returns when it is called and evaluated.

Variable

A variable has a name (which is represented by a symbol) and possibly a value.
Assignment of a value to a variable is called binding. We say: the variable is bound
to a value. When a variable has been bound, it is referencing this particular value.
Evaluation in the strict sense means dereferencing, which is: obtaining from a vari-
able the value which was bound to it previously.

In general, Maxima does not require a variable to be defined explicitly by the user
before using it. In particular, Maxima does not require a variable to have a specific
type (of value). Just as when doing mathematics on a sheet of paper, we can start
using a variable at any time. It will be defined (allocated) at use time by Maxima
automatically. We can start using a variable without binding it to a value. Maxima
recognizes the symbol, but it remains unbound. But we can also bind it at any time,
even right at the beginning of its use. The type of value of a specific variable may
change at any time, whenever the value itself changes.

The value of a variable does not need to be a numerical constant. It can be another
variable or any combination of variables and operators, that is, an expression. It

248

can even be much more than this. The variety of types (of values) of a variable is
so broad that in Lisp and in Maxima we generally use the term symbol to denote
not only the name of variable, but the variable as a whole.

One of the specific features of Lisp is that a symbol not only can have a value, but
also properties. A Maxima symbol can have properties, too, as we will see later. It
can even have two types of properties, Lisp properties and Maxima properties.

There are user variables, which the user defines, and system variables. System
variables which can be set by the user to select certain options of operation are
called option variables. With respect to the name space where the variable appears
we distinguish between global variables and local variables. For a match variable
see matchdeclare.

A.2 Lisp terminology

Form

A Lisp form ...

249

Appendix B

SBCL init file .sbclrc

The following is a model of the complete SBCL init file ".sclrc" to be placed both in
C:/Users/<user> and C/:Users/<user>/AppData/Roaming. See section 37.5.2.2 for
explanations.

; i n i t i a l i z e Quicklisp
#−quicklisp
(let ((quickl isp− init (merge−pathnames "C: / quicklisp / setup . l i sp " (

user−homedir−pathname))))
(when (probe− file quickl isp− init)
(load quickl isp− init)))
(format t "~%~a" "Quicklisp loaded . ")

; Set compiler option for maximum debug support
(declaim (optimize (debug 3)))
(format t "~%~a" " (declaim (optimize (debug 3))) set . ")

; Set external format to UTF−8
(setf sb−impl : : * default−external− format* : utf−8)
(format t "~%~a" "External format set to UTF−8. ")

; display f ina l messages
(format t "~%~a" " In i t− Fi le C: / Users/<user>(/AppData/Roaming) / . sbclrc

completed . ")
(format t "~%~a~a" "Current directory (also from Maxima) is " *

default−pathname−defaults*)
(format t "~%~a" "To change the current directory use (setq *

default−pathnames−default* #P\"D: /Maxima/ Builds / \ ") . ")
(format t "~%~a" "Relative paths can be used and standard f i l e extension .

l i sp omitted , e .g . : (load \" subdir / subdir / filename \ ") . ")
(format t "~%~a" " ")

250

Appendix C

Emacs init file .emacs

The following is a model of the complete Emacs init file .emacs to be places in
C:/Users/<user>/AppData/Roaming. See section 37.6.3.2 for explanations.

; load Quicklisp Slime helper
(load "C: / Quicklisp / slime−helper . el ")

; set in fer ior Lisp to SBCL
(setq inferior− lisp−program "C: Users/<user>/start−sbcl . bat")

; Manually set temporary copy of Windows environment variable SBCL_HOME
; This i s here only for debugging . Normally we don’ t have to do this . The

Windows environment variable is set to our separately instal led in fer ior
Lisp , and Maxima wi l l set the temporary copy of the variable i t s e l f .

; (setenv "SBCL_HOME" "C: /maxima−5.41.0/ bin ")
; (setenv "SBCL_HOME" "C: / Program Fi les / Steel Bank Common Lisp /1.3.18/")

; set up Maxima
; *maxima−build−type* can be "repo− tarball " or " ins ta l le r "
(defvar *maxima−build−type* " ins ta l le r ")
; *maxima−build−dir* contains the root directory of the build , terminated

by a slash .
(defvar *maxima−build−dir* "C: /Maxima/maxima−5.41.0/ ")
; (defvar *maxima−build−dir* "D: /Maxima/ builds /lob−2017−04−04−lb / ")
(load "D: /Programme/Maxima/System/Emacs and Slime setup for Maxima/

setup−imaxima−imath. el ")

; Key reassignments for Slime
(eval−after− load ’ slime

‘(progn
(global−set−key (kbd "C−c a") ’ slime−eval− last−expression)
(global−set−key (kbd "C−c c") ’slime−compile−defun)
(global−set−key (kbd "C−c d") ’slime−eval−defun)
(global−set−key (kbd "C−c e") ’ slime−eval− last−expression− in−repl)
(global−set−key (kbd "C−c f ") ’ slime−compile− file)
(global−set−key (kbd "C−c g") ’slime−compile−and− load−file)
(global−set−key (kbd "C−c i ") ’ slime− inspect)
(global−set−key (kbd "C−c l ") ’ slime− load− file)
(global−set−key (kbd "C−c m") ’slime−macroexpand−1)
(global−set−key (kbd "C−c n") ’slime−macroexpand−all)

251

(global−set−key (kbd "C−c p") ’ slime−eval−print− last−expression)
(global−set−key (kbd "C−c r ") ’slime−compile−region)
(global−set−key (kbd "C−c s") ’slime−eval−region)

))

; The following is placed here automatically by
; M−x customize , Editor , Basic settings , Tab width , default 8 −> 2, Save
(custom−set−variables
; ; custom−set−variables was added by Custom.
; ; I f you edit i t by hand, you could mess i t up, so be careful .
; ; Your i n i t f i l e should contain only one such instance .
; ; I f there is more than one, they won’ t work right .
’ (safe− local−variable−values (quote ((Base . 10) (Syntax . Common−Lisp) (

Package . Maxima))))
’ (tab−width 2))
(custom−set−faces
; ; custom−set−faces was added by Custom.
; ; I f you edit i t by hand, you could mess i t up, so be careful .
; ; Your i n i t f i l e should contain only one such instance .
; ; I f there is more than one, they won’ t work right .
)

This is the file start-sbcl.bat:

"C: / Program Fi les / Steel Bank Common Lisp /1.3.18/ sbcl .exe"
rem "C: /Maxima−5.41.0/bin / sbcl .exe"

rem Prior to cal l ing SBCL we can set the SBCL start directory .
rem I f we don’ t , the Emacs start directory w i l l be the default .
rem Example:
rem D:
rem cd /Programme/ Lisp

252

Appendix D

Git configuration file ".gitconfig"

The following is a model of the complete Git configuration file ".gitconfig" to be
placed in C:/Users/<username>. See section 38.2.1.3 for explanations.

[f i l t e r " l f s "]
clean = git− l f s clean −− %f
smudge = git− l f s smudge −− %f
required = true

[user]
name = Roland Salz

[user]
email = maxima@roland−salz .de

[core]
editor = ’c : / Program Fi les /Notepad++/Notepad++.exe’ −multi Inst −

nosession
autocrlf = true
whitespace = cr−at−eol

[al ias]
st = ’ status ’
ch = ’checkout ’
br = ’branch ’
logol = log −−pretty=format:’%h %cn %cd %s ’

[merge]
tool = kdiff3

[mergetool " kdiff3 "]
path = c : / Program Fi les / kdiff3 / kdiff3 .exe

[d i f f]
tool = kdiff3
guitool = kdiff3

[d i f f too l " kdiff3 "]
path = c : / Program Fi les / kdiff3 / kdiff3 .exe

253

Appendix E

blanco

(%i1)
(%i2)
(%i3)

(%o1)
(%o2)
(%o3)

(%o1)

(%i2)

(%o2)

(%i3)

(%o3)

(%i4)

(%o4)

254

Bibliography

[BaumgTM18] Andreas Baumgart. Toolbox Technische Mechanik. [Online; Stand
31. Mai 2018]. 2018. URL: https://elfe-platform.atlassian.
net/wiki/spaces/TTM/overview.

[CalvoSP18] Jorge Alberto Calvo. Scientific Programming. Numeric, Symbolic,
and Graphical Computing with Maxima. Cambridge Scholars Pub-
lishing, Newcastle upon Tyne (UK), 2018, p. 562.

[ChProGit14] Scott Chacon and Ben Straub. Pro Git. 2. ed. 2014. URL: https:
//github.com/progit/progit2/releases/download/2.1.15/
progit.pdf.

[CharMap84] B. Char. “On the design and performance of the Maple system.”
In: Proc. of the Macsyma Users Conference (1984), pp. 199–219.

[ColeSMP81] C.A. Cole and Stephen Wolfram. “SMP: A Symbolic Manipulation
Program.” In: (1981).

[EmacsMan12] GNU Emacs. GNU Emacs Manual 2.14 engl. 2012. URL: https:
//www.gnu.org/software/emacs/manual/pdf/emacs.pdf.

[eLispMan13] GNU Emacs. GNU Emacs Lisp Reference Manual 2.14 engl. 2013.
URL: https://www.gnu.org/software/emacs/manual/pdf/
elisp.pdf.

[EmacsTut] GNU Emacs. Einführung in Emacs.

[FatemThe72] Richard J. Fateman. “Essais on Algebraic Simplification.” MAC TR-
95. Thesis. Harvard University, 1972. URL: http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.648.2190&rep=
rep1&type=pdf.

[FatemMGS79] Richard J. Fateman. “Macsyma’s General Simplifier.” In: Maxima
Users’ Converence, Washington D.C. 1979: MUC-79, 563-582 (1979).
URL: http://maxima.sourceforge.net/misc/Fateman-Salz_

Simplifier_Paper.pdf.

[FatemanRM89] Richard J. Fateman. “A review of Macsyma.” In: IEEE Transactions
on Knowledge and Data Engineering 1 (1 1989), pp. 133–145.
URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.92.6365&rank=1.

[ytFatemM93] Richard J. Fateman. Why Mathematica is Not My Favorite Pro-
gramming System. [Online; Stand 20. Januar 2019]. 1993. URL:
https://youtu.be/vm9IxKsgpVM.

255

https://elfe-platform.atlassian.net/wiki/spaces/TTM/overview
https://elfe-platform.atlassian.net/wiki/spaces/TTM/overview
https://github.com/progit/progit2/releases/download/2.1.15/progit.pdf
https://github.com/progit/progit2/releases/download/2.1.15/progit.pdf
https://github.com/progit/progit2/releases/download/2.1.15/progit.pdf
https://www.gnu.org/software/emacs/manual/pdf/emacs.pdf
https://www.gnu.org/software/emacs/manual/pdf/emacs.pdf
https://www.gnu.org/software/emacs/manual/pdf/elisp.pdf
https://www.gnu.org/software/emacs/manual/pdf/elisp.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.648.2190&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.648.2190&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.648.2190&rep=rep1&type=pdf
http://maxima.sourceforge.net/misc/Fateman-Salz_Simplifier_Paper.pdf
http://maxima.sourceforge.net/misc/Fateman-Salz_Simplifier_Paper.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.92.6365&rank=1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.92.6365&rank=1
https://youtu.be/vm9IxKsgpVM

[FatemEv96] Richard J. Fateman. “Symbolic Mathematics System Evaluators.”
In: ISSAC ’96 Proceedings of the 1996 international symposium on
Symbolic and algebraic computation, Zurich, Switzerland — July
24 - 26, 1996 (1996), pp. 86–94. URL: http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.32.5106&rep=rep1&
type=pdf.

[FatemEvR99] Richard J. Fateman. “Symbolic Mathematics System Evaluators.
Revised version 1999.” In: (1999). URL: http://people.eecs.
berkeley.edu/~fateman/papers/evalnew.pdf.

[FredmCME14] Tom Fredman. Computer Mathematics for the Engineer: Efficient
Computation and Symbolic Manipulation. 2014, p. 147. URL: http:
//users.abo.fi/tfredman/comp_math_2014.pdf.

[GitRef17] Git. Git Online Reference. [Online; Stand 28. November 2017].
2017. URL: https://git-scm.com/docs.

[GosperHP17] R. William Gosper. Homepage vita. [Online; Stand 18. Dezember
2017]. 2017. URL: http://gosper.org/bill.html.

[HaagGM11] Wilhelm Haager. Grafiken mit Maxima. 2011, p. 35. URL: http:
//www.austromath.at/daten/maxima/zusatz/Grafiken_mit_

Maxima.pdf.

[HaagCAM14] Wilhelm Haager. Computeralgebra mit Maxima: Grundlagen der
Anwendung und Programmierung. Hanser, München, 2014, p. 317.

[HaagCEM17] Wilhelm Haager. Control Engineering with Maxima. 2017, p. 36.
URL: http://www.austromath.at/daten/maxima/zusatz/
Control_Engineering_with_Maxima.pdf.

[HammMTC13] Michael R. Hammock and J. Wilson Mixon. Microeconomic Theory
and Computation. Applying the Maxima Open-Source Computer
Algebra System. 1. Aufl. Springer, New York, 2013, p. 385.

[HanMC1-15] Zachary Hannan. wxMaxima for Calculus I. 2015, p. 158. URL:
https://wxmaximafor.files.wordpress.com/2015/06/wxmaxima_

for_calculus_i_cq.pdf.

[HanMC2-15] Zachary Hannan. wxMaxima for Calculus II. 2015, p. 176. URL:
https://wxmaximafor.files.wordpress.com/2015/06/wxmaxima_

for_calculus_ii_cq.pdf.

[iMaximaHP17] Yasuaki Honda. iMaxima and iMath Homepage. [Online; Stand 18.
November 2017]. 2017. URL: https://sites.google.com/site/
imaximaimath/.

[MaxiManD11] Dieter Kaiser. Maxima Manual 5.29 dt. 2011. URL: http://maxima.
sourceforge.net/docs/manual/de/maxima.html.

[KernsMVC09] G. Jay Kerns. Multivariable Calculus with Maxima. 2009, p. 52.
URL: http://gkerns.people.ysu.edu/maxima/maximaintro/
maximaintro.pdf.

256

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.32.5106&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.32.5106&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.32.5106&rep=rep1&type=pdf
http://people.eecs.berkeley.edu/~fateman/papers/evalnew.pdf
http://people.eecs.berkeley.edu/~fateman/papers/evalnew.pdf
http://users.abo.fi/tfredman/comp_math_2014.pdf
http://users.abo.fi/tfredman/comp_math_2014.pdf
https://git-scm.com/docs
http://gosper.org/bill.html
http://www.austromath.at/daten/maxima/zusatz/Grafiken_mit_Maxima.pdf
http://www.austromath.at/daten/maxima/zusatz/Grafiken_mit_Maxima.pdf
http://www.austromath.at/daten/maxima/zusatz/Grafiken_mit_Maxima.pdf
http://www.austromath.at/daten/maxima/zusatz/Control_Engineering_with_Maxima.pdf
http://www.austromath.at/daten/maxima/zusatz/Control_Engineering_with_Maxima.pdf
https://wxmaximafor.files.wordpress.com/2015/06/wxmaxima_for_calculus_i_cq.pdf
https://wxmaximafor.files.wordpress.com/2015/06/wxmaxima_for_calculus_i_cq.pdf
https://wxmaximafor.files.wordpress.com/2015/06/wxmaxima_for_calculus_ii_cq.pdf
https://wxmaximafor.files.wordpress.com/2015/06/wxmaxima_for_calculus_ii_cq.pdf
https://sites.google.com/site/imaximaimath/
https://sites.google.com/site/imaximaimath/
http://maxima.sourceforge.net/docs/manual/de/maxima.html
http://maxima.sourceforge.net/docs/manual/de/maxima.html
http://gkerns.people.ysu.edu/maxima/maximaintro/maximaintro.pdf
http://gkerns.people.ysu.edu/maxima/maximaintro/maximaintro.pdf

[LeydoldME11] Josef Leydold and Martin Petry. Introduction to Maxima for Eco-
nomics. 2011, p. 119. URL: http://statmath.wu.ac.at/~leydold/
maxima/MaximaSkript.pdf.

[MartFate71] William Martin and Richard Fateman. “The MACSYMA system.” In:
Proc. of the 2nd Symposium on Symbolic and Algebraic Manipu-
lation (1971), pp. 59–75.

[MaxiManE17] Maxima. Maxima Manual 5.41.0 engl. 2017. URL: http://maxima.
sourceforge.net/docs/manual/maxima.html.

[MosesMPH12] Joel Moses. “Macsyma: A personal history.” In: Journal of Symbolic
Computation 47 (2012), pp. 123–130.

[SbclMan17] SBCL. SBCL User Manual 1.4.2 engl. 2017. URL: http://www.
sbcl.org/manual/sbcl.pdf.

[SlimeMan15] Slime. Slime Manual 2.14 engl. 2015. URL: https://common-
lisp.net/project/slime/doc/slime.pdf.

[SouzaMaxB04] Paulo Ney de Souza. The Maxima Book. 2004, p. 155. URL: http:
//maxima.sourceforge.net/docs/maximabook/maximabook-
19-Sept-2004.pdf.

[StewenMT13] Roland Stewen. Standardaufgaben der Sekundarstufe I und II mit
Maxima lösen. 2013. URL: http://www.rvk-hagen.de/~stewen/
maxima_in_beispielen.pdf.

[TalonRP19] Michel Talon. Rules and Patterns in Maxima. [Online; Stand 20.
Februar 2019]. 2019. URL: https://www.lpthe.jussieu.fr/
~talon/pattern.pdf.

[TimbCMM16] Todd Keene Timberlake and J. Wilson Mixon. Classical Mechanics
with Maxima. 1. Aufl. Springer, New York, 2016, p. 258.

[TothTenM08] Viktor Toth. “Tensor Manipulation in GPL Maxima.” In: (2008). URL:
https://arxiv.org/pdf/cs/0503073.pdf.

[UrrozMSE12] Gilberto Urroz. Maxima: Science and Engineering Applications.
self-published, 2012, p. 438.

[wikMacsy17] Wikipedia. Macsyma. [Online; Stand 26. September 2017]. 2017.
URL: https://en.wikipedia.org/w/index.php?title=Macsyma&
oldid=781784197.

[wikDefin20] Wikipedia. Definite symmetric matrix. [Online; Stand 19. August
2020]. 2020. URL: https://en.wikipedia.org/w/index.php?
title=Definite_symmetric_matrix&oldid=972702266.

[WoolMbE18] Edwin L. (Ted) Woollett. Maxima by Example. [Online; Stand 31.
Mai 2018]. 2018. URL: http://web.csulb.edu/~woollett/.

257

http://statmath.wu.ac.at/~leydold/maxima/MaximaSkript.pdf
http://statmath.wu.ac.at/~leydold/maxima/MaximaSkript.pdf
http://maxima.sourceforge.net/docs/manual/maxima.html
http://maxima.sourceforge.net/docs/manual/maxima.html
http://www.sbcl.org/manual/sbcl.pdf
http://www.sbcl.org/manual/sbcl.pdf
https://common-lisp.net/project/slime/doc/slime.pdf
https://common-lisp.net/project/slime/doc/slime.pdf
http://maxima.sourceforge.net/docs/maximabook/maximabook-19-Sept-2004.pdf
http://maxima.sourceforge.net/docs/maximabook/maximabook-19-Sept-2004.pdf
http://maxima.sourceforge.net/docs/maximabook/maximabook-19-Sept-2004.pdf
http://www.rvk-hagen.de/~stewen/maxima_in_beispielen.pdf
http://www.rvk-hagen.de/~stewen/maxima_in_beispielen.pdf
https://www.lpthe.jussieu.fr/~talon/pattern.pdf
https://www.lpthe.jussieu.fr/~talon/pattern.pdf
https://arxiv.org/pdf/cs/0503073.pdf
https://en.wikipedia.org/w/index.php?title=Macsyma&oldid=781784197
https://en.wikipedia.org/w/index.php?title=Macsyma&oldid=781784197
https://en.wikipedia.org/w/index.php?title=Definite_symmetric_matrix&oldid=972702266
https://en.wikipedia.org/w/index.php?title=Definite_symmetric_matrix&oldid=972702266
http://web.csulb.edu/~woollett/

Index

�

, 18
� �

�

�

, 18
”, double qoute marks, 188
’ ’, quote-quote, 79
(), 18
, comma, 19, 27
., 125
/* ... */, 21
:, 19
::, 20
::=, 201
:=, 193
;, 27
<, 74
<=, 74
=, 66, 71
>, 74
>=, 74
?, 21
[], 19
#, 72
$, 27
%, 27, 29
%%, 29
%e, 245
%e_to_numlog, 118
%emode, 118
%enumer, 119
%gamma, 23
%i, 56, 245
%in, 28
%on, 29
%pi, 245
%solve, 123
%th, 29
_, 28
__, 29
^^, 125
{}, 19

activate, 88
activecontexts, 89
addcol, 137
additive, 94
addrow, 137
algsys, 122
alphabetic, 22
angles

representation and transformation, 178
anonymous function, 245
antisymmetric, 94
apply, 197
apply1, 111
apply2, 111
Apply2Part, 82
applyb1, 111
argument, 244, 245

actual, 245
formal, 245
optional, 196
required, 196

array, 244
ASCII, 22
ASDF, 226

UIOP, 226
assignment, 244

indirect, 244
assignment operator, 19

indirect, 20
assume, 96
at, 80, 156
atom, 244
atomgrad

printprops, 164
remove, 164

atvalue, 156

bc2, 171
bfloatp, 56
binding, 244, 247

258

binomial, 115
block, 192
box, 69
braces, 19
break command, 208

cabs, 59
canonical rational expression (CRE), 65,

244
carg, 59
case-sensitivity, 22
cell

wxMaxima, 17
ChangeSign, 83
character

alphabetic, 22
special, 22

charpoly, 143
clear_rules, 112
Clisp, 216
col, 138
columnvector, 128
comment operator, 21
Common Lisp, 16
commutative, 94
complex, 92
complex numbers, 56
complexp, 60
concat, 189
ConcMinSec, 178
conjugate, 59
constant, 23, 92, 244

numerical, 244
symbolical, 244
system, 245

constantp, 92
context, 88
contexts, 88
contour_plot, 39
covect, 128
CRE, 244
CRE, canonical rational expression, 65
CVect, 127
Cygwin, 216

deactivate, 89
Dec2Min, 178
declare, 91

declare (p, feature), 94
decomposition

partial fraction, 120
decreasing, 93
define, 193
defmatch, 105
defrule, 106
Deg2Rad, 178
DegRange0to2, 178
DegRange1to1, 178
demoivre, 81, 118

flag, 81
dependencies, 158

system variable, 159
depends, 158
dereferencing, 247
desolve, 171
determinant, 144
diagmatrix, 138
diff, 154

evaluation flag, 157
differentiation

implicit, 155
dispfun, 194
disprule, 112
distribute_over, 130
divide, 120
division

polynomial, 120
doallmxops, 135
documentation operator, 21
domain, 116
domxmxops, 135
domxnctimes, 136
doscmxops, 136
doscmxplus, 136
dot operator, 125
dot product, 125
dot0nscsimp, 126
dot0simp, 126
dot1simp, 126
dotassoc, 126
dotconstrules, 126
dotdistrib, 126
dotexptsimp, 126
dotident, 126
dotscrules, 126

259

double_factorial, 114
draw, 45
draw option

2D
yrange, 49

draw2d, 46
draw3d, 47

eigenvalues, 143
eivals, 143
ElemTensorDecomp, 186
elim, 124
elim_allbut, 124
ElimCommon, 85
eliminate, 123
eLisp, 220
Emacs, 220
.emacs init file, 222
equal, 72
equation, 66, 245
ev, 77
eval_string, 189
evaluation, 247
even, 92
evenfun, 93
evenp, 54
exp, 117
explicit

draw object
2D, 46

draw objects
3D, 48

exponentialize, 81
flag, 81

expression, 245
lambda, 246

ExtractCEquations, 133

factorial, 114
FactorTerms, 83
facts, 88
featurep, 95
features, 95
forget, 96
form, 248

user visible (UVF), 63
fullmapl, 141
function, 245

anonymous, 245
array, 196, 245
lambda, 199, 245
macro, 246
memoizing, 196
ordinary, 195, 245
subscripted, 197, 245
undeclared, 246

fundef, 194
funmake, 198

genfact, 115
genmatrix, 138
get_plot_option, 32
Ghostscript, 228
GIF, general internal representation, 64
Git, 229
GitHub, 230
Gnuplot, 17
gr2d, 46
gr3d, 47
Grad, 165
gradef, 162

printprops, 164
remove, 164

gradefs, 164
kill, 164

gramschmidt, 142

hessian, 155

ic1, 169
ic2, 169
ident, 138
identifier, 247

naming specifications, 22
ilt, 183
imaginary, 92
imagpart, 59
iMaxima interface, 221
implicit

draw object
2D, 47

draw objects
3D, 48

implicit_plot, 38
inchar, 27
increasing, 93

260

innerproduct, 130
Inprod, 131
inprod, 130
input tag, 26
integer, 91
integerp, 54
integervalued, 93
invert, 141
irrational, 92
is, 74, 97

jacobian, 156

kdelta, 186
KDiff3, 230
kill

gradefs, 164
kill rules, 112
killcontext, 89
kron_delta, 186

label
intermediate expression, 194

lambda expression, 246
lambda function, 245
laplace, 182
lassociative, 94
Leng, 180
linear, 94
linenum, 26
linsolve, 122
Lisp, 16

Common, 16
inferior, 221

list, 18
listarith, 129
local, 193
logsimp, 118

MacLisp, 16
macro, 200
macro expansion, 200, 246
macro function, 246
macro function definition operator, 201
macroexpand, 201
macros, 201
make_transform, 43
MakeCVect, 128

MakeList, 128
makelist, 62
MakeRVect, 128
match variable, 100
mathchdeclare, 103
matrix, 137

positive definite, 143
matrix product, 141
matrix_element_add, 136
matrix_element_mult, 136
matrix_element_transpose, 136
matrixmap, 140
matrixp, 135
Maxima

installer, 216
repository, 217
tarball, 217

MaximaL, 16
MikTeX, 227
Min2Dec, 178
MinGW, 216
mod, 114
multiplicative, 94

Names
specifications, 22

naming conventions, 23
newcontext, 88
nonarray, 93
noninteger, 91
nonintegerp, 54
nonscalar, 92
nonscalarp, 92
Normalize, 132
NormalizeColumns, 132
Notepad++, 217
notequal, 72
number

complex, 56
numberp, 52
nusum, 148

odd, 92
oddfun, 93
oddp, 54
ode, 169
ode2, 168
operator, 246

261

relational, 74
order, canonical, 65
outative, 93
outchar, 27
output tag, 26

parameter, 245, 246
parentheses, 18
parse_string, 189
part, 66
partfrac, 120
pattern, 99
pattern matching, 99, 246
pattern variable, 100
plot

axes, 39
box, 33
color, 33
legend, 33
logx, 33
logy, 33
plot_format, 33
plot_realpart, 34
point_type, 39
same_xy, 34
same_xyz, 44
style, 39
transform_xy, 44
xlabel, 34
ylabel, 34
yx_ratio, 40
zlabel, 34

plot2d, 35
plot3d, 40
plotdf, 175
polar

draw object, 47
polarform, 59
polynomial, 120
posfun, 93
powerdisp, 30
powerseries, 150
Pr, 30
Pr0, 30
Pr00, 30
predicate, 246

match, 246

print, 30
print0, 30
printprops

atomgrad, 164
atvalue, 157
gradef, 164

product
commutative, 125
dot, inner, scalar, 130
non-commutative, 125

prompt, 16, 17
properties, 91
property, 246, 248
proportional_axes

draw option, 49
props, 91
propvars, 91
PullFactorOut, 84
PullFactorOut2, 84

Quicklisp, 225
quote-quote, 246
quotient, 120

Rad2Deg, 178
radcan, 118
radexpand, 116
RadRange0to2, 178
RadRange1to1, 178
radsubstflag, 69
rank, 142
rassociative, 94
rational, 92
rationalize, 54
ratmx, 136
ratnump, 54
ratsubst, 69
real, 92
realpart, 59
rectform, 58
referencing, 247
remainder, 120
rembox, 69
remove, 91

atomgrad, 164
dependeny, 159
gradef, 164

remove_plot_option, 32

262

remrule, 111, 112
REPL, 16
replacement, 100
representation

general internal (UVF), 64
return value, 245, 247
rk, 173
rootsconmode, 116
rootscontract, 116
RotMatrix, 180
row, 138
rule, 100, 246
rules, 112
RVect, 127

SBCL: Steel Bank Common Lisp, 216, 218
.sbclrc init-file, 219
scalar, 92
scalarmatrixp, 136
scalarp, 92
scene, 45
sconcat, 189
scope, 247

dynamic, 247
lexical, 247

sequential, 192
set_draw_defaults, 45
set_plot_option, 32
Short, 180
simplify_sum, 147
simpsum, 147
Slime, 221
slime-connect, 221, 224
SP, 131
sparse, 144
specint, 183
sqrt, 116
square brackets, 19
statement, 247

compound, 247
string, 189
stringdisp, 189
sublis, 68
submatrix, 138
subst, 67
substpart, 67
sum, 146, 147

supcontext, 88
symbol, 247

naming specifications, 22
symmetric, 94
syntax description operator, 18

taylor, 151
taylordepth, 153
tellsimp, 109
tellsimpafter, 109
TeXstudio, 228
to_poly_solve, 123
TP, 131
Transpose, 129
transpose, 129, 141
triangularize, 142

Uiop, 226
undeclared function, 246
Unicode, 22
unitvector, 132
unsum, 149
uvect, 132
UVF, user visible representation, 63

value, 247
return, 247

variable, 247
global, 248
local, 248
match, 100, 248
option, 248
pattern, 100
system, 248
user, 248

VDim, 129
vect, 127
vect_cross, 127
verbose, 30
VirtualBox, 216
VNorm, 132
VP, 133
VtoCVect, 129
VtoList, 129
VtoRVect, 129

wxcontour_plot, 39
wxdraw2d, 46

263

wxdraw3d, 47
wximplicit_plot, 38
wxMaxima, 17
wxplot2d, 35
wxplot3d, 40
wxWidgets, 17

XnConvert, 175
xrange

draw option
2D, 49

zeromatrix, 138

264

	Preface
	I Historical Evolution, Documentation
	Historical evolution
	Overview
	MAC, MACLisp and MACSyMa: The project at MIT
	Initialization and basic design concepts
	Major contributors
	The users' community

	Users' conferences and first competition
	The beginning of Mathematica
	Announcement of Maple

	Commercial licensing of Macsyma
	End of the development at MIT
	Symbolics, Inc. and Macsyma, Inc.

	Academic and US government licensing
	Berkeley Macsyma and DOE Macsyma
	William Schelter at the University of Texas

	GNU public licensing
	Maxima, the open source project since 2001

	Further reading

	Documentation
	Introduction
	Official documentation
	Manuals
	English current version
	German version from 2011

	External documentation
	Manuals
	Paulo Ney de Souza: The Maxima Book, 2004

	Tutorials
	Michel Talon: Rules and Patterns in Maxima, 2019
	Jorge Alberto Calvo: Scientific Programming, 2018
	Zachary Hannan: wxMaxima for Calculus I + II, 2015
	Wilhelm Haager: Computeralgebra mit Maxima: Grundlagen der Anwendung und Programmierung, 2014
	Wilhelm Haager: Grafiken mit Maxima, 2011
	Roland Stewen: Maxima in Beispielen, 2013

	Mathematics
	G. Jay Kerns: Multivariable Calculus with Maxima, 2009

	Physics
	Edwin L. (Ted) Woollett: "Maxima by Example", 2018, and "Computational Physics with Maxima or R"
	Timberlake and Mixon: Classical Mechanics with Maxima, 2016
	Viktor Toth: Tensor Manipulation in GPL Maxima

	Engineering
	Andreas Baumgart: Toolbox Technische Mechanik, 2018
	Wilhelm Haager: Control Engineering with Maxima, 2017
	Tom Fredman: Computer Mathematics for the Engineer, 2014
	Gilberto Urroz: Maxima: Science and Engineering Applications, 2012

	Economics
	Hammock and Mixon: Microeconomic Theory and Computation, 2013
	Leydold and Petry: Introduction to Maxima for Economics, 2011

	Articles and Papers
	Publications by Richard Fateman

	Comparison with other CAS
	Tom Fredman: Computer Mathematics for the Engineer, 2014

	Internal and program documentation
	Mailing list archives

	II Basic Operation
	Basics
	Introduction
	REPL: The read-evaluate-print loop
	Command line oriented vs. graphical user interfaces

	Basic operation
	Executing an input line or cell

	Basic notation
	Output description and numbering conventions
	Syntax description operators
	Compound and separation operators
	Assignment operators
	Basic :
	Indirect ::

	Miscellaneous operators
	Comment
	Documentation reference

	Naming of identifiers
	MaximaL naming specifications
	Case sensitivity
	ASCII standard
	Unicode support
	Implementation notes

	MaximaL naming conventions
	System functions and variables
	System constants

	Correpondence of MaximaL and Lisp identifiers

	Using the Maxima REPL at the interactive prompt
	Input and output
	Input and output tags
	Multiplication operator
	Special characters

	Input
	One-dimensional form
	Statement termination operators
	System variables for backward references
	General option variables

	Output
	One- and two-dimensional form
	System variables for backward references

	Functions for output
	General option variables
	Variables generated by Maxima
	Pretty print for wxMaxima

	Graphical representation of functions
	Introduction
	Plot
	General
	Options, (user) standard options, and system standard options
	Options for both 2D and 3D plots
	Zooming the plot

	2D
	plot2d
	Explicit plot
	Parametric plot
	Discrete plot

	Implicit plot
	Contour plot
	Options for 2D

	3D
	plot3d
	Explicit plot
	Parametric plot

	Coordinate transformations for 3D
	Standard coordinate transformations
	User-defined coordinate transformations

	Options for 3D

	Draw
	Introduction
	General structure
	Using options
	General syntax
	Setting defaults for multiple scenes
	Predefined personal sets of options
	User_preamble
	Predefined personal user_preambles

	2D
	Explicit plot
	Piecewise defined function

	Implicit plot
	Polar plot

	3D
	Explicit plot
	Implicit plot

	List of available options

	Batch Processing

	III Concepts of Symbolic Computation
	Data types and structures
	Introduction
	Numbers
	Introduction
	Types
	Predicate functions

	Integer and rational numbers
	Representation
	External
	Internal
	Canonical rational expression (CRE)

	Predicate functions
	Type conversion
	Automatic
	Manual

	Floating point numbers
	Ordinary floating point numbers
	Big floating point numbers

	Complex numbers
	Introduction
	Imaginary unit
	Internal representation
	Canonical order
	Simplification
	Properties
	Code
	Generic complex data type

	Standard (rectangular) and polar form
	Standard (rectangular) form
	Polar coordinate form

	Complex conjugate
	Internal representation

	Predicate function

	Boolean values
	Constant
	Sharing of data

	List, matrix, structure
	List
	makelist
	create_list

	Matrix
	Structure

	Expression
	General definitions
	Forms of representation
	User visible form (UVF)
	General internal form (GIF)
	Canonical rational expression (CRE)

	Canonical order
	Noun and verb
	Equation
	Reference to subexpression
	Identify and pick out subexpression
	Substitute subexpression

	Manipulate expression
	Substitute pattern
	subst: substitute explicite pattern
	ratsubst: substitute implicit mathematical pattern

	Box and rembox

	Operators
	Defining and using operators
	Function notation of an operator
	Miscellaneous

	System defined operators
	Identity operators and functions
	Equation operator
	Inequation operator
	equal, notequal
	is, is(a=b), is(equal(a,b))

	Relational operators
	Logical (Boolean) operators

	Evaluation
	Introduction to evaluation
	Stavros' warning note about ev and quote-quote

	Function ev
	Quote-quote operator ' '
	Substitution
	Substituting values for variables

	Simplification
	Properties for simplification
	General simplification
	Conversion between (complex) exponentials and circular/hyperbolic functions

	Trigonometric simplification
	Own simplification functions
	Apply2Part
	ChangeSign
	FactorTerms
	PullFactorOut

	Knowledge database system
	Facts and contexts: The general system
	User interface
	Introduction
	Functions and system variables

	Implementation
	Internal data structure
	Notes on the program code

	Values, properties and assumptions
	MaximaL Properties
	Introduction
	System-declared properties
	User-declared properties
	Declaration, information, removal
	Properties of variables
	Properties of functions

	User-defined properties
	Implementation

	Assumptions
	User interface
	Introduction
	Functions and system variables for assumptions

	Implementation

	Patterns and rules
	Introduction
	What pattern matching is and how it works in Maxima
	Pattern, pattern variable, pattern parameter, match
	No backtracking
	The matching strategy in detail
	Peculiarities of addition and multiplication
	The anchor principle

	Matchdeclare
	Defmatch and defrule
	Example: Rewriting an oscillation function

	Tellsimp and tellsimpafter
	Apply1, applyb1, apply2
	Example: substituting in an expression

	Rules, disprule, printprops, propvars
	Killing and removing rules

	IV Basic Mathematical Computation
	Basic mathematical functions
	Algebraic functions
	Division with remainder, modulo

	Combinatorial functions
	Factorials
	Functions and operators
	Simplification

	Binomials

	Roots, exponential and logarithmic functions
	Roots
	Internal representation
	Simplification
	Roots of negative real or of complex numbers
	Computing all n complex roots

	Exponential function
	Simplification

	Polynomials
	Polynomial division
	Partial fraction decomposition

	Solving Equations
	The different solvers
	Linsolve
	Algsys
	Solve
	To_poly_solve, %solve

	Special tasks and techniques
	Eliminate variables from a system of equations
	Solving trigonometric or hyperbolic expressions
	Exponentialize and solve or eliminate
	To_poly and to_poly_solve or elim(_allbut)

	Linear Algebra
	Introduction
	Operation in total or element by element

	Dot operator: general non-commutative product
	Exponentiation
	Option variables for the dot operator

	Vector
	Representations and their internal data structure
	Option variables for vectors
	Construct, transform and transpose a vector
	Dimension of a vector
	Indexing: refering to the elements of a vector
	Arithmetic operations and other MaximaL functions applicable to vectors
	Scalar product
	Dot operator
	innerproduct, inprod, Inprod
	SP

	Tensor product
	Norm and normalization
	Vector equations
	Extract component equations from a vector equation

	Vector product
	Mixed product and double vector product
	Basis

	Matrix
	Internal data structure
	matrixp

	Indexing: Refering to the elements of a matrix
	Option variables for matrices
	Build a matrix
	Enter a matrix
	Append colums, rows or whole matrices
	Extract a submatrix, column or row
	Build special matrices
	Identity matrix
	Zero matrix
	Diagonal matrix

	Genmatrix

	Transform between representations
	List of sublists -> matrix
	Matrix -> list of column vectors
	List of column vectors -> list of sublists

	Functions applied element by element
	Arithmetic operations and other MaximaL functions applicable to matrices
	Mapping arbitrary functions and operators

	Transposition
	Inversion
	Product
	Non-commutative matrix product

	Rank
	Gram-Schmidt procedure
	Orthogonalize
	Orthonormalize

	Triangularize
	Eigenvalue, eigenvector, diagonalize

	Determinant
	Option variables for determinant

	Limits
	Sums, products and series
	Sums and products
	Sums
	Introduction
	Sum: consecutive indices
	Simplification
	Simpsum
	Simplify_sum

	Lsum: selected indices
	Nusum
	Differentiating and integrating sums
	Limits of sums
	Unsum: undoing a sum

	Products

	Series
	Introduction
	Sum or nusum with infinite upper bound
	Power series
	Taylor and Laurent series expansion
	Single-variable form
	Multi-variable form
	Option 'asymp
	Option variables

	Differentiation
	Differentiation operator diff
	Single-variable form
	Evaluating Dpf at a point
	Implicit differentiation

	Multi-variable form
	Partial derivatives
	Hessian

	Total derivative
	Gradient
	Jacobian

	Evaluate expr at a point x with at
	Define value c of expr at a point x with atvalue
	Evaluation flag diff
	Noun form differentiation and calculus
	Two ways to represent mathematical functions
	Variables and depends
	MaximaL functions

	Functional dependency with depends
	Using MaximaL functions
	Distinction between function and variable
	Declared function
	Undeclared function
	Function call as the independent variable in diff

	Using derivative noun forms in diff
	Differentiating derivative noun forms
	Differentiation with respect to derivative noun form

	Quoting and evaluating noun calculus forms

	Defining (partial) derivatives with gradef
	Show existing definitions
	Remove definitions

	Gradient

	Integration
	Differential Equations
	Introduction
	Overview
	Analytical methods
	Numerical methods
	Graphical methods

	Analytical solution
	Ordinary differential equation (ODE) of 1. or 2. order
	Find general solution
	ode2
	contribode

	Solve initial value problem (IVP)
	1. order ODE: ic1
	2. order ODE: ic2

	Solve boundary value problem (BVP): bc2

	System of linear ODEs: desolve

	Numerical solution
	Runge-Kutta: rk

	Graphical estimate
	Direction field
	plotdf
	drawdf

	V Special applications
	Analytic geometry
	Representation and transformation of angles
	Bring angle into range
	Degrees radians
	Degrees decimal min/sec

	Coordinate systems and transformations
	Cartesian coordinates
	Extended coordinates
	Object transformation
	Rotation

	Polar coordinates
	Cylindrical coordinates
	Spherical coordinates
	General orthogonal coordinates

	Integral transformation
	Laplace transformation
	Inverse Laplace transform
	Solving differential or convolution integral equations

	Fourier transformation

	VI Advanced Mathematical Computation
	Tensors
	Kronecker delta
	Generalized Kronecker delta
	Levi-Civita symbol

	Elementary second order tensor decomposition
	Evaluation of tensors and tensor products
	Tensor product of vectors
	Tensor product of tensors
	Symmetrization

	Numerical Computation
	Strings and string processing
	Data type string
	Transformation between expression and string
	Expression string
	String expression

	Display of strings
	Manipulating strings
	Package stringproc

	VII Maxima Programming
	Compound statements
	Sequential and block
	Sequential
	Block

	Function
	Function definition
	Defining the function
	Showing the function definition

	Function call
	Quoting a function call

	Ordinary function
	Array function, memoizing function
	Subscripted function
	Constructing (and calling) a function
	Apply: construct and call
	Funmake: construct only

	Lambda function, anonymous function
	Macro function
	Macro function definition
	Macro function expansion
	Macro function call

	Program Flow

	VIII User interfaces, Package libraries
	User interfaces
	Internal interfaces
	Command line Maxima
	wxMaxima
	iMaxima
	XMaxima
	TeXmacs
	GNUplot

	External interfaces
	Sage
	Python, Jupyter, Java, etc.

	Package libraries
	Internal share packages
	External user packages
	The Maxima exernal package manager

	IX Maxima development
	MaximaL development
	Introduction
	Development with wxMaxima
	File management

	Error handling and debugging facilities in MaximaL
	Break commands
	Tracing
	Analyzing data structures

	MaximaL compilaton
	Providing and loading MaximaL packages

	Lisp Development
	MaximaL and Lisp interaction
	History of Maxima and Lisp
	Accessing Maxima and Lisp functions and variables
	Executing Lisp code under MaximaL
	Switch to an interactive Lisp session temporarily
	Single-line Lisp mode
	Using Lisp forms directly in MaximaL

	Using MaximaL expressions within Lisp code
	Reading MaximaL expressions into Lisp
	Printing MaximaL expressions from Lisp
	Calling MaximaL functions from within Lisp

	Using the Emacs IDE
	Debugging
	Breaks
	Tracing
	Analyzing data structures

	Lisp compilation
	Providing and loading Lisp code
	Loading Lisp code
	Loading whole Lisp packages
	Modifying and loading individual system functions or files

	Committing Lisp code and rebuilding Maxima

	X Developer's environment
	Emacs-based Maxima Lisp IDE
	Operating systems and shells
	Maxima
	Installer
	Building Maxima from tarball or repository

	External program editor
	Notepad++

	7zip
	SBCL: Steel Bank Common Lisp
	Installation
	Setup
	Set start directory
	Init file ".sbclrc"
	Starting sessions from the Windows console

	Emacs
	Overview
	Editor
	eLisp under Emacs
	Inferior Lisp under Emacs
	Maxima under Emacs
	Slime: Superior Interaction Mode for Emacs

	Installation and update
	Setup
	Set start directory
	Init file ".emacs"
	Customization
	Slime and Swank setup
	Starting sessions under Emacs

	Quicklisp
	Installation

	Slime
	Asdf/Uiop
	Installation

	Latex
	MikTeX
	Ghostscript
	TeXstudio, JabRef, etc.

	Linux and Linux-like environments
	Cygwin
	MinGW
	Linux in VirtualBox under Windows
	VirtualBox
	Linux

	Repository management: Git and GitHub
	Introduction
	General intention
	Git and our local repository
	KDiff3

	GitHub and our public repository

	Installation and Setup
	Git
	Installing Git
	Installing KDiff3
	Configuring Git
	Using Git

	GitHub
	Creating a GitHub account

	Cloning the Maxima repository
	Creating a mirror on the local computer
	Creating a mirror on GitHub

	Updating our repository
	Setting up the synchronization
	Pulling to the local computer from Sourceforge
	Pushing to the public repository at GitHub

	Working with the Repository
	Preamble
	Basic operations
	Committing, merging and rebasing our changes

	Building Maxima under Windows
	Introduction
	Lisp-only build
	Limitations of the official and enhanced version
	Recipe

	Building Maxima with Cygwin

	XI Maxima's file structure, build system
	Maxima's file structure: repository, tarball, installer
	Maxima's build system

	XII Lisp program structure (model), control and data flow
	Lisp program structure
	Supported Lisps

	XIII Appendices
	Glossary
	MaximaL terminology
	Lisp terminology

	SBCL init file .sbclrc
	Emacs init file .emacs
	Git configuration file ".gitconfig"
	blanco
	Bibliography
	Index

