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Preface

Maxima was developed from 1968-1982 at MIT (Massachusetts Institute of Tech-
nology) as the first comprehensive computer algebra system (CAS). Allowing not
only for numerical, but also symbolical computation it was used by the leading US
universities, by US Government institutions like the DOE, by the US Navy, or NASA.
Having been enhanced and improved ever since, now Maxima is free (GPL) soft-
ware and counts about 150.000 users worldwide. It is employed in education and
research by mathematicians, physicists, engineers, and economists, coping with
the major commercial CAS’ of today. Since 2000 the software is maintained by an
energetic group of volunteers called the Maxima team. The author wishes to thank
its kind and helpful members, in particular Dr. Robert Dodier, who is in charge of the
project, Gunter Kénigsmann, in charge of the frontend wxMaxima, as well as Prof.
Richard J. Fateman and Dr. Stavros Macrakis, who participated in the original MIT
project and have been contributing to Maxima ever since, for almost half a century
now.

The intention of the Maxima Workbook is to provide a new documentation of the
CAS Maxima. It is aimed at both users and developers. As a users’ manual it
contains a description of the Maxima language, here abbreviated MaximalL. User
functions written by the author are added wherever he felt that Maxima’s stan-
dard functionality is lacking them. As a developers’ manual it describes a possible
software development environment. Maxima is written in Common Lisp, so the in-
terrelation between MaximalL and Lisp is highlighted. We are convinced that there
is no clear distinction between a Maxima user and a developer. Any sophisticated
user tends to become a developer, too, and he can do so either on his own or by
joining the Maxima team.
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Chapter 1

Historical evolution

1.1 Overview

The computer algebra system Maxima was developed, originally under the name
Macsyma, from 1968 until 1982 at Massachusetts Institute of Technology (MIT) as
part of project MAC. Together with Reduce it belongs to the first comprehensive
CAS systems and was based on the most modern computational algorithms of the
time. Macsyma was written in MacLisp, a pre-Common Lisp which had also been
developed by MIT.

In 1982 the project was split. An exclusive commercial license was given to a com-
pany named Symbolics, Inc., created by Macsyma users and former MIT developers,
while at the same time the United States Department of Energy (DOE) obtained a
license for the source code of Macsyma to be made available (for a considerable
fee) to academic and government institutions. This version is known as DOE Mac-
syma. When Symbolics got into financial problems, enhancement and support for
the commercial Macsyma license was separated to a company named Macsyma,
Inc., which continued development until 1999. Financial failure of this company has
left the enhanced source code unavailable ever since.

From 1982 until his death in 2001, William Schelter, professor of mathematics at
the University of Texas, maintained a copy of DOE Macsyma. He ported Macsyma
from MacLisp to Common Lisp. In 1999 he requested and received permission from
the Department of Energy to publish the source code on the Internet under a GNU
public license. In 2000 he initiated the open source software project at Sourceforge,
where it has remained until today. In order to avoid legal conflicts with the still
existing Macsyma trademark, the open source project was named Maxima. Since
then, Maxima has been continuously improved.

1.2 MAC, MACLisp and MACSyMa: The project at MIT

1.2.1 Initialization and basic designh concepts

While William A. Martin (1938-1981) had studied at MIT since 1960 and worked on
his doctoral thesis under the computer science pioneer Marvin Minsky (1927-2016)
since 1962, Joel Moses (born 1941) entered MIT in 1963 and also took up a doctor-
ate under Marvin Minsky. After both having pursued various other projects in the
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area of artificial intelligence and symbolic computation, and after having completed
their respective theses in 1967 (Joel Moses’ thesis is entitled Symbolic integration),
while staying at MIT they joined their efforts and initialized, together with Carl En-
gelman, the development of a computer algebra system called Macsyma, standing
for project MAC’s SYmbolic MAnipulator. It was meant to be a combination of all
their previous projects, an interactive system for solving symbolic mathematical
problems designed for engineers, scientists and mathematicians, with the capabil-
ity of two-dimensional display of formulas on the screen, an interpreter for step-by-
step processing, and using the latest and most sophisticated algorithms in symbolic
computation available at the time.

Since both liked Lisp for its short and elegant notation and the universal and flexible
list structure, and since they had used it in most of their previous projects, Lisp was
going to be the language in which Macsyma was to be written.

Another conceptual decision based on previous experiences was to use multiple
internal representations for mathematical expressions. Apart from the general rep-
resentation there would be a rational function representation for manipulating ra-
tios of polynomials in multiple variables, and another representation for power and
Taylor series. These different representations can still be found in today’s Maxima.

Bill Martin led the project. But Carl Engelman and his staff already left in 1969.

In 1971 the project was presented at a Symposium on Symbolic and Algebraic Ma-
nipulation by William Martin and Richard Fateman (born 1946), who had joined the
project right from the beginning. He was a graduate student in the Division of En-
gineering and Applied Physics of Harvard, (1966-71) but found an opportunity to
pursue research down the road in Cambridge, at MIT. He received his Ph.D. from
Harvard, but de facto he had contributed to the Macsyma project. His thesis from
1971 on Algebraic Simplification describes various components of Macsyma which
he had implemented, in particular the simplifier and the pattern matcher. From
1971-1974 he taught at MIT (in Mathematics), before he left for University of Cal-
ifornia at Berkeley, in Computer Science. The Macsyma project now comprised a
considerable number of doctoral students and post-doc staff members. But soon
after this presentation William Martin left the project, too, which was then led by
Joel Moses.

1.2.2 Major contributors

Major contributors to the Macsyma software were:

William A. Martin (front end, expression display, polynomial arithmetic) and Joel
Moses (simplifier, indefinite integration: heuristic/Risch). Some code came from
earlier work, notably Knut Korsvold’s simplifier. Later major contributors to the core
mathematics engine were:[citation needed] Yannis Avgoustis (special functions),
David Barton (solving algebraic systems of equations), Richard Bogen (special func-
tions), Bill Dubuque (indefinite integration, limits, power series, number theory,
special functions, functional equations, pattern matching, sign queries, Grobner,
TriangSys), Richard Fateman (rational functions, pattern matching, arbitrary pre-
cision floating-point), Michael Genesereth (comparison, knowledge database), Jeff
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Golden (simplifier, language, system), R. W. Gosper (definite summation, special
functions, simplification, number theory), Carl Hoffman (general simplifier, macros,
non-commutative simplifier, ports to Multics and LispM, system, visual equation ed-
itor), Charles Karney (plotting), John Kulp, Ed Lafferty (ODE solution, special func-
tions), Stavros Macrakis (real/imaginary parts, compiler, system), Richard Pavelle
(indicial tensor calculus, general relativity package, ordinary and partial differential
equations), David A. Spear (Grébner), Barry Trager (algebraic integration, factoring,
Grobner), Paul Wang (polynomial factorization and GCD, complex numbers, limits,
definite integration, Fortran and LaTeX code generation), David Y. Y. Yun (polynomial
GCDs), Gail Zacharias (Grobner) and Rich Zippel (power series, polynomial factor-
ization, number theory, combinatorics).

1.2.3 The users’ community

A nationwide Macsyma users community, to which belonged, among others, DOE,
NASA and the US Navy, but also companies like Eastman Kodak, had evolved in
parallel to the ongoing development of the system at MIT, and they jointly used
computers and system resources provided by ARPA and ARPANET. Significant funds
for the project came from this user group, too. The Macsyma software had grown so
large that always the newest version of a PDP-10 computer from DEC was needed
to host it. Eventually, when DEC took a decision to change to the VAX architecture,
the whole Macsyma project had to be turned over to follow it.

1.3 Users’ conferences and first competition

In 1977 Richard Fateman, meanwhile professor of Computer Science in Berkeley,
organized the first one of what would become altogether three Macsyma Users’
Conferences.

1.3.1 The beginning of Mathematica

Stephen Wolfram, a physicist and former Macsyma user from Cal Tech, designed
and presented his own commercial computer algebra system, called SMP, in 1981.
This eventually led to the development of Mathematica.

In May, 1993 Prof. Fateman gave a guest lecture at Stanford’s CS50 introductory
course in computer science held by Nancy Blachman. It contains a review of the
Mathematica system and its underlying language as of 1993 including some illus-
trations of pitfalls in the design of such systems and Mathematica in particular, as
well as comments on the use of Mathematica for introductory programming and
system building. This lecture is now on YouTube.

1.3.2 Announcement of Maple

At the 3. Macsyma Users’ Conference, which took place 1984 in Schenectady,
N.Y., home of General Electric Research Labs, another new and commercial CAS
project, called Maple, was presented. Although strongly influence by Macsyma, it
aimed at increasing the speed of computation and at the same time at reducing

4
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system memory size, so that it could operate on smaller and cheaper hardware and
eventually on personal computers.

1.4 Commercial licensing of Macsyma

1.4.1 End of the development at MIT

In 1981 the idea came up among Macsyma developers at MIT to form a company
which should take over development of Macsyma and market the product com-
mercially. This was possible due to the Bayh-Dole Act having recently passed the
Congress. It allowed universities under certain conditions to sell licenses for their
developments funded by the government to companies. The intention was to run
the CAS on VAX-like machines and possibly smaller computers. Joel Moses, who
had led the project since 1971, became increasingly engaged in an administrative
career at MIT (he was provost from 1995-1998), leaving him little time to continue
heading the Macsyma project. In 1982 the development of Macsyma at MIT had
come to an end.

1.4.2 Symbolics, Inc. and Macsyma, Inc.

Symbolics, Inc., a company that had been founded by former MIT developers to
produce LISP-based hardware, the so-called lisp machines, received an exclusive
license for the Macsyma software in 1982. While the product started well on VAX-
machines, the development of Macsyma for use on personal computers fell way
behind the competitive commercial systems Maple and Mathematica.

Lisp-machines did not become the commercial success that had been expected,
so Symbolics did not have the financial resources to continue the development of
Macsyma. In 1992 Symbolics sold the license to a company called Macsyma, Inc.
which continued to develop Macsyma until 1999. The last version of Macsyma is still
for sale on the INTERNET (as of 2017) for Microsoft’s Windows XP operating system.
Later versions of Windows, however, are not supported. Macsyma for Linux is not
available at all any more.

Nevertheless, mainly due to the work of a number of former MIT developers, like
Jeff and Ellen Golden or Bill Gosper, who had switched to work for Symbolics, the
computational capabilities of Macsyma were significantly enhanced during this pe-
riod of commercial development from 1982-1999. These enhancements are not
included in present Maxima, which is based on another branch of Macsyma devel-
opment, split off in 1982 under the name of DOE Macsyma. If these enhancements
from the Symbolics era were ever made available to Maxima in the future and could
be integrated into the present system, maybe at least in parts, this could certainly
result in a major improvement for the open source project.
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1.5 Academic and US government licensing

1.5.1 Berkeley Macsyma and DOE Macsyma

Richard Fateman had gone to Berkeley already in 1974. He continued to work on
computers at MIT via ARPANET, predecessor of the Internet. He was interested
in making Macsyma run on computers with larger virtual memory than the exist-
ing PDP-10, and when the VAX-11/780 was available he fought for Berkeley to get
one. This achieved, his idea was to write a Lisp compiler compatible with MacLisp
and which would run on Berkley UNIX. Franz Lisp was created, the name having
been invented spontaneously for its resemblance with Franz Liszt; it was still a
pre-Common Lisp. With these resources rapidly developed, Fateman had in mind
to share usage of Macsyma with other universities around. But MIT resisted these
efforts.

UC Berkeley finally reached an agreement with MIT to be allowed to distribute
copies of Macsyma running on VAX UNIX. But this agreement could be recalled
by MIT when a commercial license was to be sold by them, which eventually was
done to Symbolics. About 50 copies of Macsyma were running on VAX systems at
the time. But Fateman wanted to go on and ported Franz Lisp to Motorola 68000,
so that Macsyma could run on prototypes of workstations by Sun Microsystems.

Around 1981, when the discussion about commercial licensing of Macsyma became
more and more intense at MIT, Richard Fateman and a number of other Macsyma
users asked the United States Department of Energy (DOE), one of the main and
therefore influential sponsors of the Macsyma project, for help to make MIT allow
the software to become available for free to everyone. What he had in mind was a
kind of Berkeley BSD license, which does not, like a GNU general public license, pre-
vent commercial exploitation of the software. On the contrary, such a license, which
can be considered really free, would not only allow everyone to use and enhance
the software, but also to market their product. This license, for instance, allowed
Berkeley students to launch startups with software developed at their school.

Finally, in 1982, at the same time when the commercial license was sold to Sym-
bolics, DOE obtained a copy of the source code from MIT to be kept in their library.
It was not made available to the public, its use remained restricted to academic
and US government institutions. For a considerable fee these institutions could ob-
tain the source code for there own development and use, but without the right to
release it to others. This version of Macsyma is known as DOE Macsyma.

The version of the Macsyma source code given to DOE had been recently ported
from MacLisp to NIL, New Implementation of Lisp, another MIT development. Unfor-
tunately, this porting was not really complete, MIT never finalized it, and the DOE
version was substantially broken. All academic and government users fought with
these defects. Some revisions were exchanged or even passed back to DOE, but
basically everyone was left alone with having to find and fix the bugs.



1.5.2 William Schelter at the University of Texas

From 1982 until his sudden death in 2001 during a journey in Russia, William Schel-
ter, professor of mathematics at the University of Texas in Austin, maintained one
of these copies of DOE Macsyma. He ported Macsyma from MacLisp to Common
Lisp, the Lisp standard which had been established in the meantime. Schelter, who
was a very prolific programmer and a fine person, added major enhancements to
DOE Macsyma.

1.6 GNU public licensing

In 1999, in the same year when development of commercial Macsyma terminated,
DOE was about to close the NESC (National Energy Software Center), the library
which distributed the DOE Macsyma source code. Before it was closed, William
Schelter asked if he could distribute DOE Macsyma under GPL. No one else seemed
to care for this software anymore and neither did DOE. Schelter received permission
from the Department of Energy to publish the source code of DOE Macsyma under
a GNU public license. In 2000 he initiated the open source software project at
Sourceforge, where it has remained until today. In order to avoid legal conflicts with
the still existing Macsyma trademark, the open source project was hamed Maxima.

Since 1982, the source code of DOE Macsyma had remained completely separated
from the commercial version of Macsyma. So the code of Maxima does not include
any of the enhancements, revisions or bug fixings made by Symbolics and Macsyma
Inc. between 1982 and 1999.

1.6.1 Maxima, the open source project since 2001

Judging from the number of downloads, Maxima today has about 150.000 users
worldwide. New releases come about twice a year. Installers are provided for Linux
and Windows (32 and 64 bit versions), but Maxima can also be built by anyone
directly from the source code, on Linux, Windows or Macintosh.

An enthusiastic group of volunteers, called the Maxima team and led by Dr. Robert
Dodier from Portland, Oregon, today maintains Maxima. Among the Lisp develop-
ers are Dr. Raymond Toy, Barton Willis (Prof. of Mathematics, University of Ne-
braska, Kearney), Kris Katterjohn, David Billinghurst and Volker van Nek. Gunter
Kénigsmann (Erlangen, Germany) maintains the most popular user interface, wx-
Maxima, developed by Andrej Vodopivec (Slovenia). Wolfgang Dautermann (Graz,
Austria) created a cross compiling mechanism for the Windows installers. Yasuaki
Honda (Japan) developed the iMaxima interface running under Emacs. Mario Ro-
driguez (Spain) integrated and maintains the plotting software, Dr. Viktor T. Toth
(Canada) is in charge of new releases and maintains the tensor packages. Jaime
Villate (Prof. of Physics, University of Porto, Portugal), contributed to the graphical
interface Xmaxima and designed the Maxima homepage. Many more could be men-
tioned who contribute to Maxima in one way or the other, for instance by writing
and providing external software packages. For example, Dr. Dimiter Prodanov (Bel-
gium) recently developed a package for Clifford algebras, Serge de Marre, also from
Belgium, a package for solving Diophantine equations. Edwin (Ted) Woollett (Prof.



of Physics, California State University, Long Beach) has spent years writing a highly
sophisticated and free Maxima tutorial for applications in Physics, called Maxima by
example. Richard J. Fateman (Prof. of Computer Science, University of California at
Berkeley) and Dr. Stavros Macrakis (Cambridge, Ma.), who already were chief de-
signers and major contributors to the Macsyma software at MIT, are both still with
the Maxima project today, giving valuable advice to both developers and users on
Maxima’s principal communication channel, the mailing list at Sourceforge.

1.7 Further reading

A review of Macsyma is a long article by Richard Fateman in IEEE Transactions on
Knowledge and Data Engineering from 1989, available as free PDF. Fateman writes
in the abstract:

"We review the successes and failures of the Macsyma algebraic manipulation sys-
tem from the point of view of one of the original contributors. We provide a ret-
rospective examination of some of the controversial ideas that worked, and some
that did not. We consider input/output, language semantics, data types, pattern
matching, knowledge-adjunction, mathematical semantics, the user community,
and software engineering. We also comment on the porting of this system to a vari-
ety of computing systems, and possible future directions for algebraic manipulation
system-building."

What better inspiration for the following chapters can we wish for?

[FatemanRM89]



Chapter 2

Documentation

2.1 Introduction

It is our feeling that Maxima’s documentation can be improved. Both as a user
and even more as a developer one would like to have much more information at
hand than what the official Maxima manual, the other internal documentation that
comes with the Maxima installation, and the comments in Maxima’s program code
provide.

Especially in the beginning, the user will often not understand the information in
the manual easily. It contains a concise description of the Maxima language, here
abbreviated Maximal, but primarily as a reference directed to the very experienced
user. It takes years to really understand and efficiently use a CAS. The beginner will
need further explanation of all the implications of the condensed information from
the official manual, more examples and a better understanding of the overall struc-
ture of the complex Maxima language (it comprises of thousands (!) of different
functions and option variables).

Numerous external tutorials, some of them generally covering Maxima’s mathemat-
ical capabilities, others restricted to applications of Maxima in the most important
fields, such as Physics, Engineering or Economics, have been written and are of
immense help for the beginner. Some of them are so comprehensive that they
come close to a reference manual. Our intention is not to write a tutorial, but a
manual, directed to a broader audience than the existing one, ranging from the still
unexperienced user to the Lisp developer.

A considerable number of user interfaces have been developed, and the user will
be quite lost about judging which one will best fit his needs.

Users and developers wanting to build Maxima themselves will find little documen-
tation of the build process, especially if they want to work under Windows.

Even for an experienced Lisp developer the structure of Maxima’s huge amount of
program code will not be easy to understand. There is almost no documentation
besides the program code, and this code itself is poorly documented, having been
revised by many hands over many years. There are inconsistencies, forgotten sec-
tions, relics of ancient Lisp dialects and lots of bugs. The complicated process of
Maxima’s dynamic scoping and the information flow within the running system are



hard to keep track of. Very few of Maxima’s few Lisp developers really overlook it
completely.

This obvious lack of documentation motivated us to start the Maxima Workbook
project. But before diving into it, let us get an overview about exactly what sources
and what extend of information we have available already. As a first reference, the
user should consult the bibliography contained in Maxima’s official documentation

page.

2.2 Official documentation

2.2.1 Manuals

2.2.1.1 English current version

The official Maxima manual in English is updated with each new Maxima release. It [MaxiManE17]
is included in HTML format, as PDF and as the online help in each Maxima installer

or tarball. It can also be built when building Maxima from source code. Our Maxima

Workbook is primarily based on this documentation.

2.2.1.2 German version from 2011

A German version of the manual exists. It is also distributed with the Maxima in- [MaxiManD11]
stallers and tarballs. Note, however, that it reflects the status of release 5.29, it is

currently not being updated. Compared to the English version, it contains numer-

ous introductins, additional comments and examples and a much more complete

index. It was translated/written by Dieter Kaiser in 2011. Many of his amendments

and improvements have been incorporated in the Maxima Workbook. The author

wishes to express his thanks to Dieter Kaiser for his pioneer work in improving the

Maxima documentation.

2.3 External documentation

2.3.1 Manuals
2.3.1.1 Paulo Ney de Souza: The Maxima Book, 2004

Paulo Ney de Souza has written, together with Richard Fateman, Joel Moses and Cliff [SouzaMaxB04]
Yapp, one of the most comprehensive Maxima manuals. Unfortunately, the project

has not been finalized and is no longer updated, the last version dating from 2004.

In particular, the Maxima Book contains detailed information about different user

interfaces, including installation instructions.

2.3.2 Tutorials

The tutorials presented first are those not focused on a specific field of application.
The order is according to their date of publication.
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2.3.2.1 Michel Talon: Rules and Patterns in Maxima, 2019

This tutorial of some 20 pages facilitates access to understanding how to use Max- [TalonRP19]
ima’s pattern matching facilities, which remains difficult from reading the section

from Maxima’s manual alone. It is particularly useful for someone who furthermore

wants to understand how the pattern matcher works internally. Hints to example
applications from mathematics and physics are given at the end. Altogether, a very
substantial work written by someone deeply interested in Maxima.

2.3.2.2 )Jorge Alberto Calvo: Scientific Programming, 2018

Scientific Programming. Numeric, Symbolic, and Graphical Computing with Maxima [CalvoSP18]
uses Maxima to illustrate some methods of numeric and symbolic computation for
application in mathematically oriented sciences, and at the same time the general

use of computer programming.

2.3.2.3 Zachary Hannan: wxMaxima for Calculus | + II, 2015

This tutorial by Zachary Hannan from Solano Community College, Vallejo, Ca., al- [HanMCI-15]
though having wxMaxima in its title, really covers the CAS Maxima, viewed through [HanMC2-15]
the wxMaxima user interface. Two volumes of about 160 pages each cover basic

methods of using Maxima to solve problems from Calculus. Volumes on other fields

of application are to follow.

2.3.2.4 Wilhelm Haager: Computeralgebra mit Maxima: Grundlagen der
Anwendung und Programmierung, 2014

Wilhelm Haager’s major work on the CAS Maxima was published 2014 in German [HaagCAM14]
at Hanser Verlag. This tutorial has over 300 pages and comes close to a compre-

hensive manual of the Maxima language. For example, rule-based programming is

coverd in a separate chapter, data transfer to other programs and the implications

of Lisp are treated. A very valuable publications that one would like to see available

in English, too.

2.3.2.5 Wilhelm Haager: Grafiken mit Maxima, 2011
A tutorial in German on graphics with Maxima of about 35 pages, in the typical, [HaagGM11]
well-edited Haager style.

2.3.2.6 Roland Stewen: Maxima in Beispielen, 2013

Roland Stewen from Rahel Varnhagen Kolleg in Hagen, Germany, has written a [StewenMT13]
Maxima tutorial in German of some 400 pages primarily addressed to highschool
students. It is available online in html format and can be downloaded as PDF. The
document is clearly written, well structured, contains a detailed table of content,
an index, a bibligraphy, and can be highly recommended for the intended purpose.
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2.3.3 Mathematics
2.3.3.1 G. Jay Kerns: Multivariable Calculus with Maxima, 2009

Originating from material the author compiled for a university course in Calculus, [KernsMVC09]
this document of some 50 pages grew up to become a real introduction to Maxima.
A concise and very illustrative work for the undergraduate level.

2.3.4 Physics

2.3.4.1 Edwin L. (Ted) Woollett: "Maxima by Example", 2018, and "Com-
putational Physics with Maxima or R"

This tutorial by Edwin L. (Ted) Woollett, Prof. Emeritus of Physics and Astronomy at [WoolMbE18]
California State University (CSULB), is free online-material and certainly one of the

best and most inspiring tutorials around, and Ted’s work is still continuing! Here

we find valuable advice and many examples from the viewpoint of a computational

physicist, and some impressive, highly sophisticated worked-out applications.

2.3.4.2 Timberlake and Mixon: Classical Mechanics with Maxima, 2016

In their series Undergraduate Lecture Notes in Physics, Springer in 2016 published [TimbCMM16]
Classical Mechanics with Maxima, written by Todd Keene Timberlake, Prof. of Physics
and Astronomy, and J. Wilson Mixon, Jr., Prof. Emeritus of Economics, both at Berry
College, Mount Berry, Georgia. This elegantly written, professionally styled and
therefore well readable book contains on some 260 pages applications of Maxima
to problems from classical mechanics at the undergraduate level. After opening
the view to a wide range of problems for symbolical computation from the field of
Newtonian mechanics, the book focuses on the programming facilities inherent in
the Maxima language and on the methodology and techniques of how to transform
sophisticated algorithms for the symbolical or numerical solution of problems from
mathematical physics into Maxima. Graphical representations of the data obtained
are always in the center of interest, too, and throughout the book vividly illustrate
the results from computations.

2.3.4.3 Viktor Toth: Tensor Manipulation in GPL Maxima

Written by Viktor T. Toth, theoretical physicist, member of the Maxima team, and [TothTenMo08]
responsible for maintaining the tensor packages, this highly recommended paper

published in arxiv gives a comprehensive description of the present abilities of Max-

ima’s tensor packages for applications in physics, in particular general relativity.

2.3.5 Engineering

2.3.5.1 Andreas Baumgart: Toolbox Technische Mechanik, 2018

Andreas Baumgart from Hochschule fur Angewandte Wissenschaften, Hamburg, [BaumgTMig]
has created an extensive and very well designed internet site for illustrating how

problems in engineering mechanics can be solved with Maxima and Matlab. The

site is in German.

12



2.3.5.2 Wilhelm Haager: Control Engineering with Maxima, 2017

This well-illustrated tutorial of some 35 pages has been written by Wilhelm Haager [HaagCEM17]
from HTL St. Polten, Austria. It shows applications of Maxima in the field of Electrical
Engineering.

2.3.5.3 Tom Fredman: Computer Mathematics for the Engineer, 2014

A free tutorial of 135 pages covering both Maxima and Octave has been written [FredmCMET4]
by Tom Fredman of Abo Akademi University, Finnland for applications in Engineer-

ing. Its bibliography contains a number of other sources for Maxima applied to
engineering.

2.3.5.4 Gilberto Urroz: Maxima: Science and Engineering Applications,
2012

The extensive tutorial by Gilberto Urroz used to be available online for free, but now [UrrozMSE12]
comes as a self-published paperback for a very moderate price, considering its size
of 438 pages. It contains a large number of applications in engineering.

2.3.6 Economics

2.3.6.1 Hammock and Mixon: Microeconomic Theory and Computation,
2013

J. Wilson Mixon, Jr., Professor Emeritus of Economics at Berry College, Mount Berry, [HammMTC13]
Georgia, published Microeconomic Theory and Computation. Applying the Maxima
Open-Source Computer Algebra System together with Michael R. Hammock in 2013

with Springer. This extensive work of about 385 pages shows how Maxima can be

applied to solve a wide variety of symbolical and numerical problems that arise in

the field of economics and finance, from exploring empirical relationships between

variables up to modeling and analyzing microeconomic systems. This is the most
comprehensive book written so far which demonstrates the usefulness of Maxima

in Economic Sciences.

2.3.6.2 Leydold and Petry: Introduction to Maxima for Economics, 2011

A detailed Maxima tutorial of some 120 pages with applications to Economics has [LeydoldMET11]
been written by Josef Leydold and Martin Petry from Institute for Statistics and
Mathematics, WU Wien. It is based on version 5.25 and was last published in 2011.

It is available online as PDF.

2.4 Articles and Papers

A very comprehensive bibliography can be found in [[SouzaMaxB04].

2.4.1 Publications by Richard Fateman

Richard J. Fateman, Prof. Emeritus of University of California at Berkeley, Depart-
ment of Computer Science, who has accompanied this CAS for 50 years, has pub-
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lished a large number of articles and other papers on Macsyma/Maxima. Subjects
range from specific technical and algorithmic problems to reflections about the his-
tory of Macsyma’s development and its place in the evolution of CAS in general.
Most references can be found on his Berkeley homepage

http://people.eecs.berkeley.edu/ fateman/.
A considerable number of very interesting papers is available for free download at

https://people.eecs.berkeley.edu/ fateman/papers/.

2.5 Comparison with other CAS

2.5.1 Tom Fredman: Computer Mathematics for the Engineer, 2014

A free tutorial of 135 pages covering both Maxima and Octave has been published [FredmCMEL4]
in 2014 by Tom Fredman of Abo Akademi University, Finnland.

2.6 Internal and program documentation

2.7 Mailing list archives
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Part I

Basic Operation
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Chapter 3

Basics

3.1 Introduction

3.1.1 REPL: The read-evaluate-print loop

Maxima is written in the programming language Lisp. Originally, before this lan-
guage was standardized, MacLisp, a dialect developed at MIT, was used, later the
Maxima source code was translated to Common Lisp, the Lisp standard still valid
today. One of the key features of Lisp is the so-called REPL, the read-evaluate-
print loop. When launching Lisp, the user sees a prompt where he can enter a Lisp
form. The Lisp system reads the form, evaluates it and displays the result. After
having done this, Lisp outputs the prompt again, giving back the initiative to the
user to start a new cycle of operation by entering his next form. The Lisp system
primarily works as an interpreter. Nevertheless, functions and packages can also
be compiled.

The same basic principle of operation has been employed to the Maxima language,
which in this book we will abbreviate MaximaL. Maxima also works with a REPL, as
being the cycle of interpretation of some expression entered by the user. (Later we
will see that Maxima program code can be compiled, too.) This design principle for
the user interface was easy to implement and therefore the natural choice in the
early times. With one exception, all Maxima front ends still use this principle today.
It may seem simple and out of date, but it offers a number of significant advantages
which the user will quickly learn to appreciate. The successive loops, as they are
operated sequentially and recorded chronologically on the screen, provide a natural
log which the user can scroll back at any time to see what he has done and what
results he has obtained so far. By simply copying and pasting, the user can take
both input and output from previous loops and insert it again at the input prompt.
Previous commands can be modified and reentered, and intermediate results can
be used for further computation.

But the benefits of this way of working reach even further: when programming in
Maximal, the user can test out every bit of code in the REPL first, before integrating
it into his program. Bottom up, step by step, he builds the program, from the
most detailed routines to the most abstract layers, always basing every new part
on the direct experience in the test environment of his Maxima REPL. This way of
programming had proved to be very efficient in Lisp, and with good reason the
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same could be expected for Maxima.

This basic principle of operation has been adopted by almost all other computer
algebra systems as well. By the way: most CAS’ are implemented in Lisp or a
Lisp-like language.

Thus, with regard to this general procedure of the REPL, MaximalL and Lisp have a
certain similarity. The user who takes the effort to learn Lisp will soon find out that
similarities reach much further. However, there are also significant differences.
While Lisp is a strictly and visibly list based language working with a non-intuitive,
but highly efficient prefix notation, MaximalL is much closer to traditional languages
of the Algol-type, more intuitive, more natural to the human user, with a structure
and notation closer to the mathematical one.

3.1.2 Command line oriented vs. graphical user interfaces

User interfaces in the early days were command line oriented, not graphical. They
worked in text mode, centered around a specific spot on the screen, called the
prompt. Input was done with the keyboard. On hitting enter, the input line was
executed, creating the output to be display after a simple line-feed. The REPL
makes very intelligent use of this initial situation, and many even very experienced
CAS users still work with no other interface today. In Maxima this interface is called
command line Maxima, sect. or simply the console.

Nowadays, however, most people are used to employ the full screen of the com-
puter, and the mouse has become even more important as an input medium than
the keyboard. CAS interfaces have been developed that take this evolution into
account. wxMaxima, sect. has been designed in a way similar to the Math-
ematica notebook, and just as the latter one is most important for Mathematica,
wxMaxima is now the predominant Maxima front-end. The basic structural ele-
ment of this interface is the cell, which is a kind of a local command line interface.
Multiple cells can be created in a Maxima session, allowing the user to work with
multiple command line interfaces in parallel. This shows that the basic structure of
working with the CAS does not significantly change when moving from the console
to wxMaxima. However, the output is no longer displayed in one-dimensional text
mode, but in two-dimensional graphical mode, allowing mathematical formulas to
be represented in a much more readable way.

We should mention here already that wxMaxima, being based on wxWidgets, has
significant drawbacks if it comes to error handling, sometimes making it less ef-
ficient for sophisticated MaximalL programming and debugging compared to the
other front-ends. Between the original console and wxMaxima are a number of
Maxima user interfaces which keep the singular REPL, but integrate it in some kind
of more graphical environment. Examples are XMaxima and iMaxima.

Since Gnuplot has been integrated into Maxima, output of functions can be done
in a fully graphical way with 2D- and 3D-plots in separate windows. 2D-plots can
be scrolled in four directions, while 3D-plots can even be turned around easily and
freely, with surfaces of adaptable transparency, to be viewed from all perspectives,
inside and out, like objects in a CAD program.
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3.2 Basic operation

3.2.1 Executing an input line or cell

In command line Maxima, sect. [33.1.1, use enter to execute an input line. In
wxMaxima, sect. |[33.1.2, use shift+enter.

3.3 Basic notation

3.3.1 Output description and numbering conventions

In this manual we use certain conventions to facilitate the description of Maxima’s
output and the interactive dialogue with Maxima. Note, however, that we never
change the input required by Maxima.

We represent output formulas always in the usual mathematical 2D notation. In
order to make output better readable, we usually omit the %-character in front of
Maxima system constants such as %e, %i, %pi, etc. We write Re and Im instead of
realpart and imagpart. And as wxMaxima does, we write z instead of conjugate(z).

Input and output tags, see section are sometimes represented as they would
be in wxMaxima with its cell-based structure. Other frontends therefore might num-
ber input and output differently.

3.3.2 Syntax description operators

In order to facilitate describing the MaximalL syntax, we use a number of syntax
description operators. These do not form part of Maximal itself and thus cannot
been entered in Maxima by the user. In order to distinguish them form the proper
Maximal syntax, throughout this manual they have green color and a slightly bigger
size.

(...) [syntax description operator]
Optional elements, e.g. optional function parameters, are enclosed in angle brack-
ets. Example: see[genmatrix|

(con]-e) [syntax description operator]

Alternatives are separated by | and enclosed in (). More than two alternatives
can be represented by repeating the | operator inside of the green parentheses.
Exactly one of the alternative has to be selected. Example: see|to poly solve|

3.3.3 Compound and separation operators

(...,..,...) [matchfix operator]

While in Lisp any kind of list is enclosed in parentheses, in Maxima these are re-
served for specific lists, e.g. the list of parameters of an ordinary function definition,
the list of arguments of a function call, or a list of statements in a simple sequential
compound statement. The elements are separated by commas.
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[...,...,...] [matchfix operator]

Square bracketes enclose data lists, e.g. the elements of a one-dimensional list, or
the the rows of a matrix. They also enclose the subscripts of a variable, array, hash
array, or array function. They are also used to enclose the local variable definitions
of a block. The elements are separated by commas.

(%il) x: [a,b,c];
(%01) [a,b,c]
(%12)  x[3];
(%02) c
(%13) array(y,fixnum,3);
(%03) y
(%i4)  yl[2]: %pi;
(%04) 7T
(%15) yl[2];
(%05) T
(%16) z[al:b;
(%06) b
(%17)  zlal;
(%07) b
(%18) glk] := 1/(k"2+1);

1
(%08) k2 +1
(%19) gl1o];
[*) 9 1
e 101
{0, .., } [matchfix operator]

Braces enclose sets. The elements are separated by commas. Note that the ele-
ments of a set, unlike a list, are not ordered.
, [infix operator]

Separator of elements of a list or set. Note that in Lisp, instead, the separation
character of a list is the blank.

3.3.4 Assignment operators
3.3.4.1 Basic:

[infix operator]

This is the basic operator. When the |hs (lhs) is a simple variable (not
subscripted), : evaluates its rhs (rhs), unless quoted, and associates that value with
the symbol on the Ihs.

(%il) a:3;

(%01) 3

(%12) b:a; /* The rhs is evaluated before assigning. */
(%02) 3

(%13) c:'a; /* The rhs is not evaluated. x/
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(%03) a

(%i4) ev(c); /* Evaluation of c. */
(%04) 3

(%1i1) b:a; /* The rhs evaluates to itself. x/

(%01) a

(%12) a:c$ c:3;

(%03) 3

(%1i4) b; /* Simple evaluation of b. *x/
(%04) a

(%15) ev(b); /* Double evaluation of b. x/
(%05) c

(%16) ev(ev(b)); /* Triple evaluation of b. */
(%06) 3

Chain constructions are allowed; in this case all positions but the right-most one
are considered lhs.

(%11) X 1y : 3;

(%01) 3
(%12) X;

(%02) 3
(%13) vy,

(%03) 3

When the |hs is a subscripted element of a list, matrix, declared Maxima array, or
Lisp array, the rhs is assigned to that element. The subscript must name an existing
element; such objects cannot be extended by haming nonexistent elements.

When the lhs is a subscripted element of an undeclared Maxima array, the rhs is
assigned to that element, if it already exists, or a new element is allocated, if it
does not already exist.

When the |hs is a list of simple and/or subscripted variables, the rhs must evaluate
to a list, and the elements of the rhs are assigned to the elements of the I|hs, ele-
ment by element, in parallel (not in serial; thus evaluation of an element may not
depend on the evaluation of a preceding one).

(%i1) [a, b, c] : [4, 7, 10];

(%01) [4, 7, 10]
(%12) a;

(%02) 4

3.3.4.2 Indirect ::

[infix operator]

This is thelindirect assignment|operator. :: is the same as :, except that :: evaluates
its Ihs as well as its rhs. Thus, the evaluated rhs is assigned not to the symbol on
the lhs, but to the value of the variable on the lhs, which itself has to be a symbol.

’

o°

(%il) x :"y;
(%01) y

o
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(%12) X :: 123;

(%02) 123
(%13) X;

(%03) y
(%i4) y;

(%04) 123
(%15) X "[a, b, cl;

(%05) [a, b, c]
(%16) x 1+ [1, 2, 31;

(%06) [1, 2, 3]
(%17) a;

(%07) 1
(%18) b;

(%08) 2
(%19) C;

(%09) 3

A value (and other bindings) can be removed from a variable by functions kill
and remvalue. These unassignment functions are more important than they might
seem. Unbinding variables from values no longer needed should be made a habit by
the user, because forgetting about assigned values is a frequent cause of mistakes
in following computations which use the same variables in other contexts.

3.3.5 Miscellaneous operators

3.3.5.1 Comment
Vil [matchfix operator]

This is the comment operator. Any input in-between will be ignored.

3.3.5.2 Documentation reference

[prefix operator]
[prefix operator]

These are the documentation operators. ? placed before a system function name f
(and separated from it by a blank) is a synonym for describe (f). This will cause the
online documentation about system function f to be displayed on the screen.

?? placed before a system function name f (and separated from it by a blank) is a
synonym for describe (f, inexact). This will cause the online documentation about
function f and all other system functions having a name which starts with "f" to be
displayed on the screen.
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3.4 Naming of identifiers

3.4.1 MaximalL naming specifications
3.4.1.1 Case sensitivity

Symbols (identifiers) in Maxima are case-sensitive, i.e. Maxima distinguishes be-
tween upper-case (capital) and lower-case letters. Thus, NAME, Name and name
are all different symbols and may denote different variables.

3.4.1.2 ASCII standard

Maxima identifiers may comprise alphabetic characters, the digits 0 through 9, the
underscore _, the percent sign %, and any special character preceded by the back-
slash character. A digit may be the first character of an identifier, if it is preceded
by a backslash. Digits which are the second or later characters need not be pre-
ceded by a backslash.

alphabetic [property]

Special characters may be declared alphabetic using the [declare| function. If so de-
clared, they need not be preceded by a backslash in an identifier. The special char-
acters declared alphabetic are initially %, and _. The list of all characters presently
declared alphabetic can be seen as the Lisp variable *alphabet*.

Since almost all special characters from the ASCIl code set are in use for other
purposes in Maxima, often as operators for which the parser pays special attention,
it makes little sense to declare them alphabetic. Thus, we have taken an example
with non-ASCII characters (which does not make much more sense, as we will soon
see).

(%i1) declare("&6uAOUR",alphabetic);
(%01) done
(%12) GroBe : 123;

(%02) 123
(%13) :lisp *alphabetx*
(_%a06u0A00B)

(%14) featurep("a",alphabetic);

(%04) true

All characters in the string passed to declare as the first argument are declared to
be alphabetic. Function returns true, if all characters in the string passed
to it as the first argument have been declared alphabetic by the user or are the _
or % characters.

3.4.1.3 Unicode support

Recently, efforts have been made to include Unicode support in Maxima. It has to
be stated, however, that Unicode support is not a universal feature of Maxima, but
depends to some extend on the operating system, on the Lisp and on the front-end
used. Given that our actual system supports it, almost any Unicode character can
nowadays be used within a Maxima identifier, including in the first position. Thus,
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we do not need to declare German Umlaute as alphabetic, we can just use them.
We can use Greek letters, too, or even Chinese.

Special attention has to be payed, though, when using non-ASCIl characters. If
things work well on one system, this does not guarantee it will work without prob-
lems on another one. Besides, there might still be issues in some situations and
circumstances that have not been solved in a satisfactory way yet.

As a general statement we can say that Linux gives better and more consistent
Unicode support than Windows. Concerning the Lisp, we find that SBCL is always a
good choice, combining most efficient behavior with least problems. From the point
of view of the front-ends, wxMaxima takes most efforts to provide comprehensive
Unicode support.

3.4.1.3.1 Implementation notes

Maxima uses Lisp function alphabetp to determine whether a character is allowed
as an alphabetic character in an identifier. This function refers to CL system func-
tion alpha-char-p. In a working UTF8 environment, this will allow almost any Uni-
code character except for punctuation and digits. In addition, alphabetp checks the
global variable *alphabet* for characters declared alphabetic by the user.

3.4.2 MaximalL naming conventions
3.4.2.1 System functions and variables

In general, Maxima’s system functions and variables use lower-case letters only
and use the underscore character to separate words within a symbol, e.qg. carte-
sian_product.

In order to clearly distinguish them from system functions, our own additional func-
tions and variables start with capital letters and use capital letters to separate
words within a symbol, e.qg. ExtractEquations.

3.4.2.2 System constants

System constants like the imaginary unit i, the Euler’'s number e, or the constants
m and 7y are preceded by % in Maxima (i.e. %i, %e, %pi, %gamma) to make them
better distinguishable from ordinary letters or identifiers. One has to keep this in
mind in order not to be confused. Note in the following example that log denotes
the natural logarithm with base e. Maxima and its system functions return the input
expression, if they cannot evaluate it.

(%il) %se~log(x);

(%01) X

(%12) e~log(x);

(%02) el09(x)

(%1i3) %pi;

(%03) %pi

(%1i4) float(%pi);

(%04) 2.128231705849268
(%15) float(pi);
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(%06) pi

wxMaxima will return m both in number 3 and 6. In 3 it denotes the constant, in 6
the lower-case Greek letter.

3.4.3 Correpondence of MaximalL and Lisp identifiers

MaximalL Lisp

var ( $VAR, $var, $Var)— $VAR; |$VAR|
VAR |$var]|

Var |$Var]|

?var ( VAR, var, Var)— VAR

2\ % var\—1\* *VAR—1*
Table 3.1 - Correspondence of Maximal and Lisp identifiers

MaximaL and Lisp symbols are distinguished by a naming convention. A Lisp symbol
which begins with a dollar sign $ corresponds to a MaximaL symbol without the
dollar sign. For example, the MaximaL symbol foo corresponds to the Lisp symbol
$FOO. Lisp functions and variables which are to be visible in Maxima as functions
and variables with ordinary names (no special punctuation) must have Lisp names
beginning with the dollar sign $.

On the other hand, a MaximaL symbol which begins with a question mark ? cor-
responds to a Lisp symbol without the question mark. For example, the MaximalL
symbol ?foo corresponds to the Lisp symbol FOO. Note that ?foo is written without
a space between ? and foo; otherwise it might be mistaken for the Maxima function
describe("foo") which can also be written as ? foo.

Hyphen -, asterisk *, or other special characters in Lisp symbols must be escaped
by backslash \ where they appear in Maximal code. For example, the Lisp identifier
*foo-bar* is written ?\* foo\—bar\* in MaximalL.

While Maxima is case-sensitive, distinguishing between lowercase and uppercase
letters in identifiers, Lisp does not make this distinction. $foo, $FOO and $Foo are
all converted by the Lisp reader by default to the Lisp symbol $FOO.

This discrepancy requires some rules governing the translation of names between
Lisp and Maxima.

1. A Lisp identifier not enclosed in vertical bars || corresponds to a Maxima identifier
in lowercase. Whether a Lisp identifier is uppercase, lowercase, or mixed case, is
ignored, e.qg., Lisp $foo, $FOO, and $Foo all correspond to Maxima foo. This is
because $foo, $FOO and $Foo are converted by the Lisp reader to the Lisp symbol
$FOO0, since Lisp is not case-sensitive.

2. A Lisp identifier enclosed in vertical bars and
2.1. which is all uppercase or all lowercase corresponds to a Maxima identifier
with case reversed. That is, uppercase is changed to lowercase and lowercase
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to uppercase. E.g., Lisp |$FOO| and |$foo| correspond to Maxima foo and FOO,
respectively.

2.2. which is mixed uppercase and lowercase corresponds to a Maxima identifier
with the same case. E.qg., Lisp |$Foo| corresponds to Maxima Foo.
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Chapter 4

Using the Maxima REPL at the
interactive prompt

4.1 Input and output

4.1.1 Input and output tags

In order to make backward references easier, the cycles of operation of the Maxima
REPL are numbered consecutively. On launching a Maxima session at the Maxima
console, the user sees the first input tag.

Now he can input a MaximalL expression to be evaluated. We call this a statement
or form. Enter starts evaluation. The result (the value returned) is shown with an
output tag having the same number as the input tag. Then a new input tag appears,
introducing the next cycle of operation.

o°

) 2+43;
) 5
)

o°

N R R

i
0
i

(
(
(

o°

wxMaxima shows a slightly different behavior. The input tag appears only at eval-
uation time. Enter will only cause a line-feed, having no other effect on evaluation
than a blank, while shift-enter or ctrl-enter starts evaluation. When an input expres-
sion is an assignment, the corresponding output expression displays no numbered
output tag, but instead the symbol to the left of the assignment in parentheses. If
the input expression is only a symbol, the normal output tag is displayed.

(%1il) temp:-30.5;

(temp) -30.5

%12) temp;

%02) -30.5

linenum [variable]

Maxima keeps the current tag number in the global variable linenum. Entering
linenum:O0 or kill(all) resets the input and output tag number to 1.
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(%117) T1inenum:0;

(%00) 0

(%1il) a;

(%01) a

inchar default: "%i" [variable]
outchar default: "%o0" [variable]

These global variables contain the symbols used in input and output tags. They can
be changed by the user.

4.1.2 Multiplication operator

The * (asterisk) operator for multiplication cannot be omitted in input; a blank does
not mean multiplication.

stardisp default: false [variable]

In output, * normally is not displayed, here blank means multiplication. When
stardisp is set to true, however, the * is displayed.

4.1.3 Special characters

The standard Maxima console does not allow for input and display of special charac-
ters. iMaxima displays in Latex output form, thus allowing for the display of special
characters. Only wxMaxima allows input of special characters from palettes and
also displays them.

4.2 Input

4.2.0.1 One-dimensional form

Maxima and all of its front-ends allow input of mathematical expressions only in
one-dimensional form. Parentheses have to be used to group subexpressions, e.g.
the numerator and denominator of a fraction.

4.2.1 Statement termination operators

; [postfix operator]
$ [postfix operator]
’ [infix operator]

After entering an input expression, either a semicolon or a dollar sign is expected as
a statement termination operator. In both cases the next output tag is assigned the
result from evaluation of the input expression, but in the latter case, output is not
displayed on the screen. Multiple expressions can be entered in the same line, but
each of them needs a termination character. They are also expected at the end of
every input expression to be processed from a file. Inside of a compound statement,
however, the individual statements are not separated by a colon or dollar sign, but
by a comma.
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4.2.2 System variables for backward references

_ (underscore) [variable]

This system variable contains the most recently evaluated input expression, i.e.
the expression with input tag (%in), n € N being the most recent cycle having
been evaluated. _ is assigned the input expression before the input is simplified
or evaluated. However, the value of _is simplified (but not evaluated) when it is
displayed.

_ is recognized by batch and load. In a file processed by batch, _ has the same
meaning as at the interactive prompt. In a file processed by load, _is bound to the
input expression most recently evaluated at the interactive prompt or in a batch
file. _is not bound to the input expressions in the file being processed.

Note that a :lisp command is not associated with an input tag and cannot be refer-
enced by _.

13 + 29;

o°
'—l
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o°
o

= &

o° —~ o°

-
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o

o°
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sin (%pi/2);

o°
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The above example not only illustrates the _operator, but also nicely demonstrates
the difference between evaluation and simplification. Although in a broader sense
we often talk about "evaluation" when we want to indicate that Maxima processes
an input expression in order to compute an output, in the strict sense the meaning
of evaluation is limited to dereferencing. Everything else is simplification. In the
example above, only at %06, %08 and %09 we see evaluation, as the symbol a is
dereferenced, i.e. replaced by its value. After this replacement, the addition of the
values constitutes another simplification.

%in [variable]
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This system variable contains the input expression with input tag (%in), n € N. Its
behavior corresponds exactly to _.

(double underscore) [variable]

This system variable contains the input expression currently being evaluated. Its
behavior corresponds exactly to . In particular, when load (filename) is called
from the interactive prompt, __ is bound to load (filename) while the file is being
processed.

4.2.3 General option variables

4.3 Output

4.3.0.1 One- and two-dimensional form

display2d default: true [variable]

Output will normally be displayed in two-dimensional form, including in the command-
line mode of the console. If the option variable display2d is set to false, output will
be displayed in one-dimensional form as in the input.

4.3.0.2 System variables for backward references

% [variable]

This system variable contains the output expression most recently computed by
Maxima, whether or not it was displayed, i.e. the expression with output tag (%on),
n € N being the most recent cycle having been evaluated. When the output was
not displayed, this output tag is not visible on the screen either.

% is recognized by batch and load. In a file processed by batch, % has the same
meaning as at the interactive prompt. In a file processed by load, % is bound to the
output expression most recently computed at the interactive prompt or in a batch
file; % is not bound to output expressions in the file being processed.

Note that a :lisp command does not create an output tag and therefore cannot be
referenced by %.

%th(n) [function]
This system function returns the n-th previous output expression, n € N. Its behavior
corresponds to %.

%on [variable]
This system variable contains the output expression with output tag (%on), n € N.
Its behavior corresponds exactly to %.

% % [variable]

In compound statements, namely (s, ..., sp), block, or lambda, this system variable
contains the value of the previous statement. At the first statement in a compound
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statement, or outside of a compound statement, %% is undefined. %% is recog-
nized by batch and load, and it has the same meaning as at the interactive prompt.
A compound statement may comprise other compound statements. Whether a
statement be simple or compound, %% contains the value of the previous state-
ment. Within a compound statement, the value of %% may be inspected at a break
prompt, which is opened by executing the break function.

4.3.1 Functions for output

print (p1,...,pPn) [function]
print0 (p1, ..., pPn) [function of rs_print0]

4.3.2 General option variables

powerdisp default: false [option variable]

When powerdisp is true, an expression is displayed in reverse canonical order, see
sect. 0.3l

verbose default: false [option variable]

This global variable controls the amount of output printed by various function, e.q.

POWErSEries|

4.3.3 Variables generated by Maxima

In certain situations Maxima functions may generate there own new variables.

General variables are composed of a small g followed by a number, starting with
gl,g2,... Summation indeces beginn with a small i instead and are numbered
independently of the g-variables.

For instance, each time [powerseries| returns a power series expansion, it generates
a new summation index, starting with i1, i2, ...

4.3.4 Pretty print for wxMaxima

Package rs_pretty print.mac provides functions for pretty output. When placed at
the end of an input form, they will add a comment and a noun form of the input
at the beginning of Maxima’s return value. These functions are particularly useful
when employed within wxMaxima for evaluating large cells. With the additional in-
formation provided by functions Pr and Pr0, the output can be read fluently without
constantly having to refer back to the input.

This package uses function printO instead of print, and thus it requires package
rs_print0.lisp. This also means that between the parameters of the leading com-
ment, blanks have to be inserted manually.

expr$ Pr(("text"))$ [function of rs_pretty print]
expr$ Pro(("text"))$ [function of rs_pretty print]
expr$ ProO({"text"))$ [function of rs_pretty print]
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Function Pr is used in the following way. Terminate the input expression with $.
Then continue on the same line with the function call of Pr, also terminated with $.
If a parameter string "text" is supplied, Maxima’s output will be preceeded by "text"
as a comment to what follows, terminated with a colon. Then, if the return value
is different from the input, a noun form of the input will preceed Maxima’s return
value, separated by either = or <=>, depending on whether the expression is an
equation or not. In case of the input being an assignment, the variable assigned
to will preceed the assigned value (again split into a noun form and the evaluated
form, if different), separated by :=.

Mathematical expressions evaluated by Maxima can be included in the leading com-
ment. The comment can comprise a variable number of parameters (including
zero), separated by commas.

Pr0 is the same as Pr, but the noun form is not displayed. PrO is useful, when
a number of consecutive transformations of an expression is performed and the
leading comment is to replace the information given by the noun form of a step.
Pro0 is the same as Pr0, but the equal or equivalence sign is omitted as well.

o°

il) bg[x]: x[tl=v[ox]*t$ Pr("Bewegungsgleichung in x-Richtung")$
i2) bglz]: z[t]l=-g*xt"2/2+v[oz]*t+h$ Pr("Bew.gl. in z.Richtung")$
i3) eliminate([bg[x],bg[z]],[t])[1]$ Proo("t eliminieren")$

i4) expand(solve(%th(2),z[t]))[1]$ Proo("Aufldésen nach z")$
i5)
0l)
02)
03)

o°

o®

—_—~—~—~ —~
oP

o°

z[x]: ev(rhs(%sth(2)),x[t]=x)$ Pro0("Wurfparabel-Funktion")$
Bewegungsgleichung in x-Richtung: bgy := Xt = Vvoxt

A
o°

Bew.gl. in z-Richtung: bg,:= zt=—(g * t2)/2+ Voz * t+h

—
of

o°

(

t eliminieren: vgx (2z:—2h) + gxf — 2Vox Voz Xt

2
. gx Voz Xt
(%04) Auflosen nach z: zy=— £

2 vgx Vox

. 9X2 VozX
(%05) Wurfparabel-Funktion: zy :=— + +h
2v2  Vox

Note that when using one of the pretty print functions, %th(2) has to be used in-
stead of % when refering to the last output expression. The next example shows
that we can even display the most challenging tensor notations.

(%11) goijp:diff(goij,p)$ Preo('gl",p"171j)$

(0/012) ZeromatriX(3,3)$ Proo(lg[u’(pu]/\ij'u — ",’g[“,Z"]Aij,“ ",’g[k],\“-l")
$
0 0 0
(%01) gl"}'o: goijo:=|0 —% 0
0 0
0 0O
. P
(%02) gl =gl =gl [0 0 0
0 0O
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Chapter 5

Graphical representation of
functions

5.1 Introduction

There are two different Maxima interfaces for plotting, both being based on GNU-
plot: plot and draw. Both interfaces are able to deliver 2D and 3D representations.
Although they cover the same kind of problems, the two interfaces are substantially
different with respect to the structure of their commands, so we treat them sepa-
rately. Plot is the older interface, offering less functionality, but being easier at the
same time, so we describe it first.

Both plot and draw come with additional special functions for use with wxMaxima
only. These functions start with the prefix wx (e.g. wxplot2d, wxplot3d). They are
the same as the ordinary functions plot2d and plot3d, with the only difference that
they do not open a separate window to display the plot, but instead integrate it into
the output of the .wxm file or into the .wxmx file.

5.2 Plot

5.2.1 General
5.2.1.1 Options, (user) standard options, and system standard options

The user can customize any of the plot functions by setting plot options. This can
be done individually for each function call. It is also possible to set (user) standard
options which then apply to any function call unless they are overwritten by it.
Certain individual options cannot be set as standard, see details in the description
of plot options.

Certain options are set standard by the system already, e.g. the order of colors in
a multiple plot, if no colors are specified by the user. They can be viewed with the
following function.

set_plot_option ({options, ..., optionp)) [function]
get_plot_option (name , index)) [function]
remove_plot_option (name) [function]
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Setting (user) standard options is done with function set_plot_option. Each option is
a list in square brackets, as described below. set plot_option returns a list not only
of the standard options currently set by the user, but also of all system standard
options. Giving an empty set of parentheses to this function will only return the
currently set (user and system) standard options without adding any to them.

get_plot_option returns as a list in square brackets the current standard setting of
the option name. If the second argument index is present, only the indexth element
of this list will be returned (the first element is the option name).

remove_plot option removes from the list of standard options the option name.
Note that this function requires exactly one argument; multiple removals are not
possible.

5.2.1.2 Options for both 2D and 3D plots

All options (this also holds for the options specific to either 2D or 3D as described
in sections [5.2.2.4] and [5.2.3.3) consist of a list (in square brackets) starting with
one of the keywords in this section, followed by one or more values. (This layout is
comparable to a function name and its arguments.) The options that accept among
their possible values true or false, can also be set to true by simply writing their
names. For instance, typing logx as an option is equivalent to writing [logx, true].

[box, true | false] default: true [plot option]

If set to true, a bounding box will be drawn around the plot; if set to false, no box
will be drawn.

[color, colory, ..., colorp] [plot option]

In 2d plots this option defines the color (or colors) for the various curves. In plot3d,
it defines the colors used for the mesh lines of the surfaces, when no palette is
being used. If there are more curves or surfaces than colors, the colors will be
repeated in sequence. The valid colors are red, green, blue, magenta, cyan, yellow,
orange, violet, brown, gray, black, white, or a string starting with the character #
and followed by six hexadecimal digits: two for the red component, two for green
component and two for the blue component. If the name of a given color is unknown
color, black will be used instead.

[legend, false | strings, ..., stringn] [plot option]

Specifies the labels for the plots when various plots are shown. If there are more
plots than the number of labels given, they will be repeated. If given the value false,
no legends will be shown. By default, the names of the expressions or functions will

be used, or the words discretes, ..., discrete, for discrete sets of points.
[logx, true { false] default: false [plot option]
[logy, true | false] default: false [plot option]

Makes the horizontal or vertical axes to be scaled logarithmically.

[plot format, format] default: gnuplot } gnuplot_pipes [plot option]
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Specifies the format for the plot. In Windows the default is gnuplot, in all other
systems it is gnuplot pipes. The formats xmaxima or openmath will cause the plot
to be displayed in an xMaxima window.

[plot realpart, true { false] default: false [plot option]

If set to true, the functions to be plotted will be considered as complex functions
whose real part should be plotted; this is equivalent to plotting realpart(function).
If set to false, nothing will be plotted when the function does not give a purely real
value. For instance, when x is negative, log(x) gives a complex value, with the real
value equal to log(abs(x)); if plot realpart were true, log(-5) would be plotted as
log(5), while nothing would be plotted if plot_realpart were false.

%il) plot2d(realpart(log(x)),[x,-2,21,[y,-4,21);
%i2) plot2d(log(x),[x,-2,2],[y,-4,2],plot_realpart);

Both plots will return exactly the same graph.

log(abs(x))

Figure 5.1 - Plotting

e -1.5 -1 -0.5 0 0.5 1 1.5 2 the real part of the
X complex logarithm.
[same xy, true } false] default: false [plot option]

If true, displays the graph with the same scale for both x and y axes. For a 2D plot,

see also [yx_ratio]

[xlabel, string] [plot option]
[ylabel, string] [plot option]
[zlabel, string] [plot option]

xlabel and ylabel specify the string that will label the first/second axis; if this option
is not used, that label will be the name of the independent variable / "y", when plot-
ting functions with plot2d or implicit_plot, or the name of the first/second variable,
when plotting surfaces with plot3d or contours with contour plot, or the first/second
expression in the case of a parametric plot.

Zlabel specifies the string that will label the third axis, when using plot3d. If this op-
tion is not used, that label will be “z”, when plotting surfaces, or the third expression
in the case of a parametric plot. It will be ignored by plot2d and implicit _plot.
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These options cannot be used with set_plot_option.

5.2.1.3 Zooming the plot
mails Robert and Laurent, 12.12.2018

5.2.2 2D

There are 5 basic types of 2D plot: explicit plot, parametric plot, discrete plot,
implicit plot, and contour plot. The first three are implemented in function plot2d,
the last two in separate functions.

5.2.2.1 plot2d

plot2d ((plot | [ploty, ..., plotn1)(, x_range)(, y_range)(, options)) [function]
wxplot2d(...) [function]

These functions plot a two-dimensional graph of

- an expression giving the y-coordinate as a function of one variable being the x-
coordinate (explicit plot),

- two expressions, one for the x- and one for the y-coordinate, as being functions of
a single common parameter (parametric plot), or

- a number of discrete points in the xy-plane (discrete plot).

Each type can be used in single or multiple form, and different types can be com-
bined to one representation.

plot|[ ploty, ..., plot,]

A single plot is given as the first argument to plot2d while a multiple plot is given
as a list (of plots) being the first argument. Each of the plots is either an expression
(for an explicit plot), a parametric plot, or a discrete plot.

5.2.2.1.1 Explicit plot

A single 2D explicit plot displays the graph of an expression as a function of one vari-
able. While the independent variable determines the x-coordinate of a plot point,
the function value determines its y-coordinate. A multiple explicit plot displays
multiple such graphs. An explicit functional expression in terms of the independent
variable is given for each individual plot. The independent variable has to be the
same for all plots of a multiple explicit plot.

x_range is of the form: [x_name, min, max].

This is mandatory for explicit plots and specifies the name of the independent vari-
able of the expression(s) to be plotted, and the range of its domain to be displayed
on the horizontal axis. In case of a multiple explicit plot, the same x _range is
used for all expressions. Individual plotting ranges are not possible (in contrast to
plot3d). Hence, it is not possible to plot a piecewise defined function. In a combi-
nation of explicit and parametric plots, the name of the independent variable has
to be x.
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y _range is of the form: [y, min, max].

This is optional and specifies the range of the codomain to be displayed on the
vertical axis. If this option is used, the plot will show this exact vertical range,
independently of the values reached by the plot. Everything outside of the given
range will be clipped off. If the vertical range is not specified, it will be set according
to the minimum and maximum values of the second coordinate reached by the plot.
For y range the name is always y. So it is wise not to use y as the name of the
independent variable.

The complete syntax for an explicit plot is
plot2d ((expr | [expr, ..., expral)(, x_range)(, y_range)(, options))

Options are described in sections [5.2.1.2] and [5.2.2.4] In case of a multiple plot,
different colors will be used automatically for the different expressions and a legend
will be created. Options present in case of a multiple plot apply to all plots; it is not
possible to set options individually.

Note that the separate plot window (not when integrated into the wxMaxima file
with wxplot2d) can be scrolled both horizontally and vertically to see beyond the
selected ranges. The plot can be exported, e.g. as a .png file, directly from the
separate plot window.

(%11) plot2d([%e”™x, %e”™(-x), log(x), 1/x, sqrt(x)],I[x,-3,51,[y,-10,10]);

(]

10

-10 1 1 |i 1 1 1 1
-3 -2 -1 0 1 2 3 4 5 Figure 5.2 - Multiple

X 2D explicit plot.

5.2.2.1.2 Parametric plot

A single 2D parametric plot displays a graph generated in parallel by two different
expressions, one for the x- and one for the y-coordinate, as being functions of a
common single parameter. The name of the parameter always has to be t. A
multiple parametric plot displays multiple such graphs. The complete syntax for a
single parametric plot is

plot3d ([parametric, exprx, expry, [t, min, max]] {, options)).
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This creates a curve in in the two-dimensional space exprx x expry in terms of the
parameter t ranging from min to max.

Neither x_range nor y_range have to be present. When they are, they will specify
the ranges to be displayed in the graph for the horizontal and the vertical axis.
When they are not present, ranges will be set according to the minimum and maxi-
mum values of the coordinates reached by the plot points.

(%11)  plot2d([[parametric, sin(t), cos(t),[t,0,2«%pi]], [parametric, sin(t
), cos(t)/2,[t,0,2«%pi]]],same_xy);

Figure 5.3 - Multiple
2D parametric plot.

5.2.2.1.3 Discrete plot

A single 2D discrete plot displays a graph consisting of a number of discrete points
specified explicitly by their x- and y-coordinates. A multiple discrete plot displays
multiple such graphs. The syntax for a single discrete plot is

[discrete, xlist, ylist] | [discrete, [[x1,y1],...,[Xn, ¥Yn]]

This creates a plot of n discrete points, where xlist and ylist are lists in square
brackets of n elements each, containing in sequence the x- resp. y-coordinates
of the points to be plotted. So the coordinates of the points can be enterd either
separately for x- and y- valuse, or point by point. If no option styles is present,
by default [style, lines] is assumed, that is, the discrete points are linked by line

segments, see section|5.2.2.4]

(%1i1) plot2d([[discrete, makelist(i,i,1,10),makelist(sqrt(i),i,1,10],]
discrete, makelist(i,i,0,10),makelist(sqrt(i)+sin(i),i,0,10)]1]1,[style,
points], [point_type,plus]);

For more examples see the examples to the function rk implementing the Runge-

Kutta method for numerically solving a first order ODE.

Combining a discrete with an explicit plot, e.g., it is possible to represent the dis-
crete data of an experiment together with a theoretically assumed continuous func-
tion to interpret them.
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5.2.2.2 Implicit plot

A single 2D implicit plot displays the graph of a function given implicitly by an
equation containing both the independent (x-coordinate) and the dependent (y-
coordinate) variable. This equation does not have to be in explicit form.

implicit_plot ((eq | [equ, ..., eqn]), X_range, y_range (, options)) [function]
wximplicit_plot(...) [function]

In the first case this plots a single function defined implicitly by equation equ. The
syntax is similar to plot2d. The domain is defined by x range and y range which
are both mandatory. Both variable names can be selected freely. Multiple implicit
plots can be combined to a graph by giving a list of equations [eq1,...,eqn], one
for each plot. Before it can be used this function has to be loaded.

(%1i1) load(implicit_plot);
%i1)  implicit_plot([x"2+y~2=1, (x/2)"2+y~2=1/4], [x,-1,11, [y,-1,11,
same_xy) ;

Figure 5.5 - Multiple
implicit plot. The re-
i sulting curves are the
. i . same as in the multiple
-1 -0.5 0 0.5 1 parametric plot of Fig.

x B3
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5.2.2.3 Contour plot

A 2D contour plot displays contours (curves of equal value) of a scalar-valued func-
tion of two arguments over a 2D region defined by the domains of these two argu-
ments. Such a function can be considered a scalar field.

contour_plot (expr, x_range, y_range ( [opti],..., [optn]>) [function]
wxcontour_plot(...) [function]

This plots several curves of equal value of expr over the region defined by x_range
and y range. The names of the x- and y-coordinates can be selected freely. con-
tour _plot accepts only options which can be used for plot3d. Each one of them has
to be present as a list, i.e. the abbreviation of giving only the name of an option to
indicate its value as true, is not allowed. Some of these options, e.g. same_xy, will
cause the 2D plot to be displayed in a 3D representation.

(%1il) contour_plot(x/y,[x,-2,21,1y,-2,2]1);
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Figure 5.6 - Contour
plot.

5.2.2.4 Options for 2D

[axes, (value |false)] default: true [plot option]

value can be either true, false, x, y or solid. If false, no axes are shown; if x or y,
only the x or y axis will be shown; if true, both axes will be shown. solid will show
the two axes with a solid line, rather than the default broken line.

[point_type, types, ..., typenl [plot option]

Each set of points to be plotted with the style points or linespoints will be repre-
sented with objects taken from this list, in sequential order. If there are more sets
of points than objects in this list, they will be repeated sequentially. The possible ob-
jects that can be used are: bullet, circle, plus, times, asterisk, box, square, triangle,
delta, wedge, nabla, diamond, lozenge.

[style, styley | [stylei], ..., stylen, | [stylep]] [plot option]

39



Describes the style(s) of the plot(s). If there are more plots than styles present, the
styles will be repeated sequentially. Each style is either given by its name only, or
as a list with additional arguments. In the first case, standard values are assumed
for the style. In the second case, the first element of the list is the name of the
style, followed by the arguments.

Each style can be either lines for line segments, points for isolated points, lines-
points for segments and points, or dots for small isolated dots. Gnuplot accepts
also an impulses style. If enclosed in a list, lines accepts one or two arguments: the
width of the line and an integer that identifies a color. The default color codes are:
1: blue, 2: red, 3: magenta, 4: orange, 5: brown, 6: lime and 7: aqua. If Gnuplot
is used with a terminal different than X11, those colors might be different. points
accepts one to three arguments; the first one is the radius of the points, the second
one is an integer that selects the color, using the same code used for lines and the
third one is currently used only by Gnuplot and it corresponds to several objects
instead of points. The default types of objects are: 1: filled circles, 2: open circles,
3: plus signs, 4: x, 5: *, 6: filled squares, 7: open squares, 8: filled triangles, 9:
open triangles, 10: filled inverted triangles, 11: open inverted triangles, 12: filled
lozenges and 13: open lozenges. Note that point types can be specified with option
point_type, see above. linespoints accepts up to four arguments: line width, points
radius, color and type of object to replace the points.

[yx_ratio, r] [plot option]

r defines the ratio between the vertical and the horizontal sides of the rectangle

used to make the plot. See also[same_xy}

5.2.3 3D

In 3D only two basic types of plot are possible: explicit plot and parametric plot.
They are both implemented in function plot3d. Implicit 3D plots are possible only
with draw3d.

5.2.3.1 plot3d

plot3d (plot {, options)) [function]
wxplot3d(...) [function]

These functions plot a three-dimensional graph of

- an expression giving the z-coordinate as a function of two variables being the x-
and the y-coordinates (explicit plot), - three expressions, one for each of the x-, y-,
and z-coordinates, as being functions of two common parameters (parametric plot).

Multiple explicit plots can be combined to one representation. In contrast to plot2d,
however, only single parametric plots can be displayed, and the combination of
explicit and parametric plots is not possible, either.

5.2.3.1.1 Explicit plot

A single 3D explicit plot displays the graph of an expression giving the z-coordinate
as a function of two variables being the x- and y-coordinates. A multiple explicit
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plot displays multiple such graphs. In this case, an explicit functional expression in
terms of the independent variables is given for each individual plot.

For a single plot, the explicit functional expression is given as the first argument to
plot3d. In this case, x_range and y_range have to be the second and third argument,
possibly followed by options. The complete syntax for a single plot is

plot3d (expr, x_range, y_range (, options)).

A multiple explicit plot can have two different forms, depending on whether the
individual plots share the same x_range and y _range or not. In both cases, and in
contrast to plot2d, x_range and y_range form part of the list of plots. The syntax
for a multiple explicit plot using the same x_range and y_range is

plot3d ([expri, ..., expry, X_range,y _rangej ( options)).

The syntax for a multiple plot using a different x_range and y_range for each indi-
vidual plot is

plot3d ([[expri, x_rangei, y _rangeil,...,[exprn, X_rangen, y_rangenl] ( options)).

x_range is of the form: [x_name, min, max],
y_range is of the form: [y_name, min, max].

These are both mandatory within explicit plots and specify the names (which can
be chosen freely) of the independent variables of the expression(s) to be plotted,
and the ranges of their domains. x _range and y range, however, can be repeated
as part of the options. In this case, their names have to be x and y, and they specify
the ranges to be displayed on the two horizontal axes. Everything outside of the
given ranges will be clipped off. If the ranges are not specified within the options,
ranges to be displayed will be set according to the minimum and maximum values
of the domains specified within the explicit plots.

z_range is of the form: [z, min, max].

This is optional and specifies the range of the codomain to be displayed on the
vertical axis. If this option is used, the plot will show that exact vertical range,
independently of the values reached by the plot. Everything outside of the given
range will be clipped off. If the vertical range is not specified, it will be set according
to the minimum and maximum values of the third coordinate of the plot points. For
z range the name is always z. So it is wise not to use z as the name of one of the
independent variables.

Options are described in sections [5.2.1.2] and [5.2.3.3] In case of a multiple plot,
different colors will be used automatically for the different expressions and a legend
will be created. Options present in case of a multiple plot apply to all plots; it is not
possible to set options individually.

Note that the separate plot window (not when integrated into the wxMaxima file
with wxplot3d) can be scrolled in all three directions to see beyond the selected
ranges. Furthermore, by using the mouse, the surface plotted can be turned around
and viewed from all sides. The plot can be exported, e.qg. as a .png file, directly
from the separate plot window.
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Here is an example of a multiple explicit plot consisting of three individual plots,
each having different x- and y-ranges

(0/011) p10t3d( [ [XA2+yA21 [XI '414] ’ [yr '414] ] ’ [XA3+yA3; [Xr '3,3] ’ [y, '3,3] ] ) [X
A4+yA4r [Xr '212] ’ [YI '212] ] ] );

Figure 5.7 -  Multi-
ple 3D explicit plot
with different x- and
y-ranges for each
surface.

5.2.3.1.2 Parametric plot

A single 3D parametric plot displays a surface generated in parallel by three dif-
ferent expressions (for the x-, y- and z-coordinates) as functions of two common
parameters. The names and the ranges of these parameters don’t necessarily have
anything to do with the names and ranges of the x-, y- and z-coordinates. A multiple
parametric plot displays multiple such surfaces. The complete syntax for a single
parametric plot is

plot3d ([exprx, expry, expr,], [p_name1, mini, maxil,[p_name,, miny, maxs] (, options)).

This creates a surface in the three-dimensional space expry x expry x expr; in terms
of the two common parameters p_name; and p_name;.

Neither x_range nory range nor z_range have to be present (in the options section).
When they are, their names have to be x, y, and z, and they will specify the ranges
to be displayed for the two horizontal and the vertical axes. When they are not
present, ranges will be set according to the minimum and maximum values of the
coordinates of the plot points.

(%il) plot3d([t+u,t-u,t*ul,[t,0,2],[u,0,2]);

5.2.3.2 Coordinate transformations for 3D

plot3d not only supports standard coordinate transformations from cylindrical or
spherical to cartesian coordinates, but in addition lets the user define and apply his
own special coordinate transformation functions. This not only allows for giving the
expressions to be plotted in cylindrical or spherical coordinates, but in any type of
coordinates the user wants.
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Parametric function

Figure 5.8 - Single 3D
parametric plot.

5.2.3.2.1 Standard coordinate transformations

Standard coordinate transformations predefined for plot3d are
- cylindrical to cartesian (polar_to_xy), and
- spherical to cartesian (spherical_to_xyz).

Note that polar _to_xy cannot be used with plot2d, it is only a 3D feature, and it
should have better been called cylindrical_to_xyz. In the next section we will define
our own coordinate transformation carrying precisely this name.

A coordinate transformation is invoked in a plot3d with option transform_xy, see

section[5.2.3.3k

(%11) plot3d ( 5, [theta, 0, %pil, [phi, 0, 2x%pi], same_xyz,
[transform_xy, spherical_to_xyzl]);

MR oo

£ oo

'
(=3

Figure 5.9 - 3D explicit
plot in spherical coor-
dinates.

5.2.3.2.2 User-defined coordinate transformations

make_transform ([cname1, cname;, cnames],[exprx, expry, exprz]) [function]
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Returns a function suitable to be used in the option transform_xy of plot3d.
cnamei, cnamez, cnames specify the names of the three new coordinates, and
exprx, expry, expr, their functional expressions to build the cartesian x-, y- and
z-coordinates.

As an example, we shall define a coordinate transformation called cylindrical_to_xyz
which is in fact identical to the preconfigured one polar_to_xy

(%1il) cylindrical_to_xyz: make_transform([r,phi,z], rxcos(phi), rxsin(phi
),2)$

%12) plot3d (-r, [r, 0, 3], [phi, 0, 2%%pi], [transform_xy,
cylindrical_to_xyz]);

Figure 5.10 - 3D ex-
plicit plot in cylindrical
coordinates.

5.2.3.3 Options for 3D

[same xyz, true { false] default: false [plot option]

If true, the scales of all three axes will be the same.

[transform xy, false { ct_ name] default: false [plot option]

This is a 3D option only. It allows for coodinate transformations within plot3d.
ct_ name is the name of either a predefined coordinate transformation (polar_to_xy
or spherical to xyz), or one defined by the user with make_transform. See section

[5.2.3.2] for details.

5.3 Draw

5.3.1 Introduction

This package is a Maxima interface to GNUplot. It allows for significantly more
functionality compared to Maxima’s propriatory plot package, but at the price of a
far more complicated syntax.
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This package was written and is being maintained by Mario Rodriguez Riotorto.
Ample examples can be found in ...

5.3.2 General structure

The draw package has to be loaded explicitly by the user with load(draw) prior to
using it.

draw (...,(gr2d|gr3d),...(, options)) [function]

This main function of the package plots a column of scenes, each of them being a
picture, a graphical diagram, a plot in either 2D or 3D. Each scene is evoked by an
appearance of a scene constructor, either[gr2d| or|gr3d|, which can be combined in
any order and number. General options for all scenes may follow. Each scene can
contain multiple graphical objects, e.g. plots.

5.3.2.1 Using options

5.3.2.1.1 General syntax

The general syntax for options is
option_name = [valuey, ..., valuey].

Global options may appear anywhere in draw, gr2d or gr3d, draw2d or draw3d,
their position does not matter.

5.3.2.1.2 Setting defaults for multiple scenes

set draw_defaults (opty, ..., optm) [function]
set draw_defaults ()

The first line sets up user defaults for options to be used for all subsequent scenes.
The second line removes all existing user defaults for the subsequent scenes.

5.3.2.1.3 Predefined personal sets of options

In maxima-init.mac | have predefined lists of personal default options: my _general options,
my 2d _options and my 3d options. They can be incorporated as needed in any
scene by simply including the respective symbols as global options.

%il) draw3d(implicit(x"2+y~2=z"2,x,-1,1,y,-1,1,2z,-1,1),
my_general_options,my_3d_options);

Alternatively, they can be permanently assigned by set draw_defaults. This assign-
ment is not yet done in maxima-init.mac, because it depends on the dimension of
the plot to be created.

(%11) apply(set_draw_defaults,my_general_options);
%i2) draw3d (implicit(x~2+y"2=z"2,x,-1,1,y,-1,1,z,-1,1,my_3d_options));

Or in case two lists shall be combined:
(%11) apply(set_draw_defaults,append(my_general_options,my_3d_options));
(%12) draw3d (implicit (x"2+y"~2=z"2,x,-1,1,y,-1,1,2z,-1,1));
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5.3.2.1.4 User_preamble

This option allows to specify certain gnuplot settings which cannot be incorporated
with the usual syntax for options.

user_preamble = "set opts;...;set opt,"

Options are specified by using gnuplot’'s set command followed by the option and
possible values. Options are separated by a semicolon.

user_preamble = "set raxis; set grid polar; set size 1.1,1.1"

5.3.2.1.4.1 Predefined personal user_preambles

In maxima-init. mac |1 have a predefined list of options for the user _preamble in
my_user_preamble which can be easily incorporated into a scene.

(%11) draw2d(explicit(x,x,0,1),user_preamble=my_user_preamble);
The user preamble of a specific scene can contain other options as well.

(%11) draw2d(polar(1l,theta,0,2*%pi),user_preamble=append(my_user_preamble
,["set raxis","set grid polar"]);

5.3.3 2D

gr2d ((opti, ..., optm, )graph_obju, ..., graph_objn) [scene constructur]

This is the constructor for a single 2D scene to be used as an argument to function
draw. Multiple graphical objects gobji, ..., gobj, can be plotted within the scene
under global options opt, ..., optn.

draw2d ({(opti, ..., optm, )graph_obji, ..., graph_obj,) [function]
wxdraw2d (...) [function]

These two functions, see this chapter’s introduction for their difference, are a short-
cut for|[drawj(gr2d((opt, ..., optm, )graph_obj, ..., graph_objn)).

5.3.3.1 Explicit plot

explicit (f, x, min, max) [graphical object]

A graphical object of this type plots function f, given in explicit form, with the inde-
pendent variable x in the range from x=min to x=max.

5.3.3.1.1 Piecewise defined function

In combination with the global options xrange and yrange it is possible to plot a
piecewise defined function.

(%11) draw2d (explicit(0.5,x,0,1),explicit(1l,x,1,2),explicit(1.5,x,2,3),
xrange=[0,3],yrange=[0,2]);
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5.3.3.2 Implicit plot

explicit (f, x, min, max) [graphical object]

A graphical object of this type plots function f, given in implicit form, with dependent
variable x in the range from x=min to x=max. Note that in combination with the
global option xrange it is possible to plot a piecewise defined function.

5.3.3.3 Polar plot

polar (radius, ang, angmin, ANgmax) [graphical object]

Plots the radius as a function of the angle in the given range. This object can be
plotted with an underlying polar grid, see thread in maxima-discuss from March
2019.

(%11) draw2d(polar(1l-(theta/(2x*%pi)),theta,0,2*%pi), xrange=[-1,1],
yrange=[-1,1], proportional_axes = xy, user_preamble="set raxis; set
grid polar");

Underlying cartesian and polar grids can be combined, too.
(%i1) draw2d (polar(1l-(theta/(2*%pi)),theta,0,2*%pi), xrange=[-1,1],

yrange=[-1,1], proportional_axes = xy, grid=true, user_preamble="set
raxis; set grid polar");

5.3.4 3D

gr3d ((opt, ..., optm, )graph_obj, ..., graph_objn) [scene constructur]

This is the constructor for a single 3D scene to be used as an argument to function
draw. Multiple graphical objects gobji, ..., gobj, can be plotted within the scene
under global options opty, ..., optm.

draw3d ((opta, ..., optm, ygraph_obji, ..., graph_objn) [function]
wxdraw3d(...) [function]
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Figure 5.13 - Plotting a function in
polar coordinates and with aunder-
lying cartesian and polar grids with
1 s 0 os . draw.

These two functions, see this chapter’s introduction for their difference, are a short-
cut for|[drawj(gr3d((opt, ..., optm, )gobji, ..., gobjn)).

5.3.4.1 Explicit plot

explicit (f, X, Xmin, Xmax, ¥, Ymin, ¥Ymax) [graphical object]

A graphical object of this type plots function f, given in explicit form, with the inde-
pendent variables x and y in the given ranges.

Just like in the 2D case, in combina